 基于go和flutter的实时通信/视频直播解决方案 段维伟第一部分 即将讲述的内容 • WebRTC 实时通讯 • Flutter 跨平台UI 开发框架 • 基于Flutter UI 框架的WebRTC 插件 flutter-webrtc • Go 语言的WebRTC 协议栈 pion/webrtc • 基于pion/webrtc 的应用级服务框架 pion/ion • 5G 时代, 实时通讯应用爆发 • 疫情影响,全世界都在使用远程教育,远程办公 实际开发中会遇到的困难 • 下载和编译Google WebRTC框架(防火墙,编译环境) • 原生SDK开发(每平台人力投入) • UI 的一致性,更新迭代(类似SDK需按平台维护) • 性能问题(全部使用html5) 客户端是否有 更好的选择? 为何选择 Flutter • 同样是 Google 发起的跨全平台高性能UI框架 • 基于 Skia 2D 渲染引擎 • 使用类似JS/TS的Dart com/pion/ion • 基于pion/webrtc 开发 pion/ion-sfu • 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块0 码力 | 38 页 | 2.22 MB | 1 年前3 基于go和flutter的实时通信/视频直播解决方案 段维伟第一部分 即将讲述的内容 • WebRTC 实时通讯 • Flutter 跨平台UI 开发框架 • 基于Flutter UI 框架的WebRTC 插件 flutter-webrtc • Go 语言的WebRTC 协议栈 pion/webrtc • 基于pion/webrtc 的应用级服务框架 pion/ion • 5G 时代, 实时通讯应用爆发 • 疫情影响,全世界都在使用远程教育,远程办公 实际开发中会遇到的困难 • 下载和编译Google WebRTC框架(防火墙,编译环境) • 原生SDK开发(每平台人力投入) • UI 的一致性,更新迭代(类似SDK需按平台维护) • 性能问题(全部使用html5) 客户端是否有 更好的选择? 为何选择 Flutter • 同样是 Google 发起的跨全平台高性能UI框架 • 基于 Skia 2D 渲染引擎 • 使用类似JS/TS的Dart com/pion/ion • 基于pion/webrtc 开发 pion/ion-sfu • 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块0 码力 | 38 页 | 2.22 MB | 1 年前3
 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单。 舆论分析这个概念在最前沿科技或理论中的潜在应用,列出十个充满想象力和震撼性,前所未有的应用。 如果要量化研究审美智能概念,请提出一个合理的,有效的,各指标不重叠的,你自己能提取数据的指数体系框架,不少于三十 个指数。 请大家研究任何问题,先用这四个提示词进行提问。一是跨学科融合,二是深层次原理,三是概念前沿应用,四是如何量化分析。 任何学术概念。 里面会有些冗余信息,可以删除回复中 语言逻辑清晰,条理分明, 各部分之间过渡自然,逻辑 连贯。在研究现状部分,按 照不同研究领域和主题进行 分类,逻辑性强 报告整体呈现出总分总的逻 辑架构,语言描述清晰,避 免冗长,使用简短的句子表 达复杂的信息 报告整体架构严谨,以引言、 技术原理、应用现状、技术 挑战、未来展望等部分进行 层层递进。语言中多使用中 性描述,客观呈现研究进展 与问题 语言逻辑严谨,条理清晰,各部分 研究现状部分围绕研究主题 进一步细分为多个研究层次, 结构合理 内容结构完整,格式较一般 综述结构较为标准,在中文 文献分析上具有优势 在写作前,系统会先生成详细的写 作大纲,为文章的结构提供清晰的 框架。文本内容结构清晰,包括历 史背景、当前趋势、应用领域、挑 战与局限、未来方向。每个部分都 有详细的子标题,结构合理,层次 分明 PS:使用感受会因个体差异而有不同,仅作参考 生成综述对比:完整性与全面性0 码力 | 85 页 | 8.31 MB | 8 月前3 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单。 舆论分析这个概念在最前沿科技或理论中的潜在应用,列出十个充满想象力和震撼性,前所未有的应用。 如果要量化研究审美智能概念,请提出一个合理的,有效的,各指标不重叠的,你自己能提取数据的指数体系框架,不少于三十 个指数。 请大家研究任何问题,先用这四个提示词进行提问。一是跨学科融合,二是深层次原理,三是概念前沿应用,四是如何量化分析。 任何学术概念。 里面会有些冗余信息,可以删除回复中 语言逻辑清晰,条理分明, 各部分之间过渡自然,逻辑 连贯。在研究现状部分,按 照不同研究领域和主题进行 分类,逻辑性强 报告整体呈现出总分总的逻 辑架构,语言描述清晰,避 免冗长,使用简短的句子表 达复杂的信息 报告整体架构严谨,以引言、 技术原理、应用现状、技术 挑战、未来展望等部分进行 层层递进。语言中多使用中 性描述,客观呈现研究进展 与问题 语言逻辑严谨,条理清晰,各部分 研究现状部分围绕研究主题 进一步细分为多个研究层次, 结构合理 内容结构完整,格式较一般 综述结构较为标准,在中文 文献分析上具有优势 在写作前,系统会先生成详细的写 作大纲,为文章的结构提供清晰的 框架。文本内容结构清晰,包括历 史背景、当前趋势、应用领域、挑 战与局限、未来方向。每个部分都 有详细的子标题,结构合理,层次 分明 PS:使用感受会因个体差异而有不同,仅作参考 生成综述对比:完整性与全面性0 码力 | 85 页 | 8.31 MB | 8 月前3
 Ubuntu 桌面培训 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 IV.74 框架选定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model Environment)是一个国际性的项目,为开发完整的,由自 由软件组成的桌面环境而努力。桌面环境,即图形用户界面,是计算机系统中最外层 的软件。GNOME 项目的目标包括创建软件开发框架,选择桌面应用程序,编写负责 引导应用软件的程序,文件句柄,窗口和任务管理器等。来自世界各地的社区成员 将 GNOME 翻译到各种语言中,让使用不同的语言的人们都能享用 GNOME。(参 考:http://en 目录 图 III.10 无 线 网 络 对 话 框 3. 输入您想设定的连接名称。 4. 在无线选项页的 SSID 框里输入要连接到的无线网络的SSID(服务集标识),然后在 模式下拉列表中选择架构。 5. 在无线安全性选项卡的安全性下拉列表中选择无线网络的加密方式,如 WPA WPA2.0 6. 选择 IPv4 设置来配置连接。 a. 在方法复选框中,选择手动,并在地址右侧点击添加。0 码力 | 540 页 | 26.26 MB | 1 年前3 Ubuntu 桌面培训 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 IV.74 框架选定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model Environment)是一个国际性的项目,为开发完整的,由自 由软件组成的桌面环境而努力。桌面环境,即图形用户界面,是计算机系统中最外层 的软件。GNOME 项目的目标包括创建软件开发框架,选择桌面应用程序,编写负责 引导应用软件的程序,文件句柄,窗口和任务管理器等。来自世界各地的社区成员 将 GNOME 翻译到各种语言中,让使用不同的语言的人们都能享用 GNOME。(参 考:http://en 目录 图 III.10 无 线 网 络 对 话 框 3. 输入您想设定的连接名称。 4. 在无线选项页的 SSID 框里输入要连接到的无线网络的SSID(服务集标识),然后在 模式下拉列表中选择架构。 5. 在无线安全性选项卡的安全性下拉列表中选择无线网络的加密方式,如 WPA WPA2.0 6. 选择 IPv4 设置来配置连接。 a. 在方法复选框中,选择手动,并在地址右侧点击添加。0 码力 | 540 页 | 26.26 MB | 1 年前3
 清华大学 DeepSeek 从入门到精通+ 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 成的内容。 ▪ 挑战预设思维模式:通过打破任务的常规设定,促使AI生成具有挑战性和创新性的内容。 灵活运用任务开放性:给AI自由发挥的空间 创新设计策略: ▪ 设定基本框架,留出探索余地:提示语应提供一个结构化的框架,包含具体的生成目标,但不应过度限制表 达方式或细节内容,给AI足够的空间进行创造。 ▪ 多维度任务引导:通过引导AI从多个角度看待问题,激发其对生成内容的多样化思考。 AI缺陷:臆造之辞 从期望结果 开始 倒推提示语 结构 灵活调整提 示语细节 矛盾思维法:利用对立促进创新 引入对立概 念 利用矛盾性促进创新 提出冲突性任务要求 融合批判性思维与创新推理 • 质疑既有框架 • 创新推理 多方论证与批判结合, 增强生成内容的全面性 涌现思维模型:利用集体智慧的提示语设计 提示语链的概念与特征 提示语链是用于引导AI生成内容的连续性提示语序列。通过将复0 码力 | 103 页 | 5.40 MB | 8 月前3 清华大学 DeepSeek 从入门到精通+ 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 成的内容。 ▪ 挑战预设思维模式:通过打破任务的常规设定,促使AI生成具有挑战性和创新性的内容。 灵活运用任务开放性:给AI自由发挥的空间 创新设计策略: ▪ 设定基本框架,留出探索余地:提示语应提供一个结构化的框架,包含具体的生成目标,但不应过度限制表 达方式或细节内容,给AI足够的空间进行创造。 ▪ 多维度任务引导:通过引导AI从多个角度看待问题,激发其对生成内容的多样化思考。 AI缺陷:臆造之辞 从期望结果 开始 倒推提示语 结构 灵活调整提 示语细节 矛盾思维法:利用对立促进创新 引入对立概 念 利用矛盾性促进创新 提出冲突性任务要求 融合批判性思维与创新推理 • 质疑既有框架 • 创新推理 多方论证与批判结合, 增强生成内容的全面性 涌现思维模型:利用集体智慧的提示语设计 提示语链的概念与特征 提示语链是用于引导AI生成内容的连续性提示语序列。通过将复0 码力 | 103 页 | 5.40 MB | 8 月前3
 Kubernetes Operator 实践 - MySQL容器化搜狗商业平台 技术体系广 服务多迭代快 搜狗产品矩阵 商业平台 信息流广告 搜索广告 品牌广告 代理商 广告主 技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 权 监 控 IaaS Registry SOA服务框架 DevOps 测 试 账户 搜狗商业平台基础平台 物料 计费 管理界面 项目 管理 CI&&CD 统一配 置中心 Cluster2 Node Node Node Node 商业云平台 集群高可用 • 支持 MySQL 集群弹性伸缩 • 支持 MySQL 5.5 & 5.7 Master Slave1 Slave2 MySQL 集群:1 主 2 从 MySQL 容器化系统架构 REST CLI Kubernetes Master API Server Scheduler Controller Manager NodeM kubelet kube-proxy0 码力 | 42 页 | 4.77 MB | 1 年前3 Kubernetes Operator 实践 - MySQL容器化搜狗商业平台 技术体系广 服务多迭代快 搜狗产品矩阵 商业平台 信息流广告 搜索广告 品牌广告 代理商 广告主 技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 权 监 控 IaaS Registry SOA服务框架 DevOps 测 试 账户 搜狗商业平台基础平台 物料 计费 管理界面 项目 管理 CI&&CD 统一配 置中心 Cluster2 Node Node Node Node 商业云平台 集群高可用 • 支持 MySQL 集群弹性伸缩 • 支持 MySQL 5.5 & 5.7 Master Slave1 Slave2 MySQL 集群:1 主 2 从 MySQL 容器化系统架构 REST CLI Kubernetes Master API Server Scheduler Controller Manager NodeM kubelet kube-proxy0 码力 | 42 页 | 4.77 MB | 1 年前3
 基于 KUBERNETES 的 容器器 + AI 平台xiaoqin@caicloud.io VP of R&D 提纲 构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 KUBERNETES 上的应⽤用 • k8s 基础资源之外 • 资源分组和整体状态 • 重⽤用 YAML 配置 • 版本化 • 启动依赖 • Helm 很棒,但是 …… 典型企业应⽤用的架构 CAICLOUD/RUDDER • 2 CRDs - Release, Release History • 1 控制器器 - Rudder aka Release Controller • lease • https://github.com/caicloud/charts • https://github.com/caicloud/helm-registry Rudder 技术架构 ⼀一套基于 k8s 控制器器模式的原⽣生的应⽤用管理理 和编排运⾏行行时 安全性与扩展性:从 k8s 原⽣生模式中获益 状态可读:跟踪所有 k8s 对象状态 版本化:快速从历史版本回滚0 码力 | 19 页 | 3.55 MB | 1 年前3 基于 KUBERNETES 的 容器器 + AI 平台xiaoqin@caicloud.io VP of R&D 提纲 构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 KUBERNETES 上的应⽤用 • k8s 基础资源之外 • 资源分组和整体状态 • 重⽤用 YAML 配置 • 版本化 • 启动依赖 • Helm 很棒,但是 …… 典型企业应⽤用的架构 CAICLOUD/RUDDER • 2 CRDs - Release, Release History • 1 控制器器 - Rudder aka Release Controller • lease • https://github.com/caicloud/charts • https://github.com/caicloud/helm-registry Rudder 技术架构 ⼀一套基于 k8s 控制器器模式的原⽣生的应⽤用管理理 和编排运⾏行行时 安全性与扩展性:从 k8s 原⽣生模式中获益 状态可读:跟踪所有 k8s 对象状态 版本化:快速从历史版本回滚0 码力 | 19 页 | 3.55 MB | 1 年前3
 MySQL高可用 - 多种方案....................................................................................... 3 2.2 方案架构图 ................................................................................................. ....................................................................................... 9 3.2 方案架构图 ................................................................................................. ...................................................................................... 16 4.3 方案架构图 .................................................................................................0 码力 | 31 页 | 874.28 KB | 1 年前3 MySQL高可用 - 多种方案....................................................................................... 3 2.2 方案架构图 ................................................................................................. ....................................................................................... 9 3.2 方案架构图 ................................................................................................. ...................................................................................... 16 4.3 方案架构图 .................................................................................................0 码力 | 31 页 | 874.28 KB | 1 年前3
 谈谈MYSQL那点事互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事  MySQL MySQL 基本介绍 基本介绍  MySQL MySQL 优化方式 优化方式  MySQL MySQL 技巧分享 技巧分享  Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 拥有自己独立的缓冲池,能够缓存数据和索引 拥有自己独立的缓冲池,能够缓存数据和索引 MySQL 架构设计—应用架构 强一致性 对读一致性的权衡,如果是对读写实时性要求非常高的话, 就将读写都放在 M1 上面, M2 只是作为 standby 。 比如,订单处理流程,那么对读需要强一致性,实时写实 时读,类似种涉及交易的或者动态实时报表统计的都要采 用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品 业务实时性要求不是很高,完全可以采用这种弱一致性的设 计架构模式。 中间一致性 如果既不是很强的一致性又不是很弱的一致性,那 么我们就采取中间的策略,就是在同机房再部署一个 S1(R) ,作为备库,提供读取服务,减少 M1(WR) 的 压力,而另外一个0 码力 | 38 页 | 2.04 MB | 1 年前3 谈谈MYSQL那点事互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事  MySQL MySQL 基本介绍 基本介绍  MySQL MySQL 优化方式 优化方式  MySQL MySQL 技巧分享 技巧分享  Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 拥有自己独立的缓冲池,能够缓存数据和索引 拥有自己独立的缓冲池,能够缓存数据和索引 MySQL 架构设计—应用架构 强一致性 对读一致性的权衡,如果是对读写实时性要求非常高的话, 就将读写都放在 M1 上面, M2 只是作为 standby 。 比如,订单处理流程,那么对读需要强一致性,实时写实 时读,类似种涉及交易的或者动态实时报表统计的都要采 用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品 业务实时性要求不是很高,完全可以采用这种弱一致性的设 计架构模式。 中间一致性 如果既不是很强的一致性又不是很弱的一致性,那 么我们就采取中间的策略,就是在同机房再部署一个 S1(R) ,作为备库,提供读取服务,减少 M1(WR) 的 压力,而另外一个0 码力 | 38 页 | 2.04 MB | 1 年前3
 Apache Pulsar,云原生时代的消息平台 - 翟佳
持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ • ⾼性能 + 强⼀致性 • ⽀持统⼀的 Queue 和 Stream 的接⼝。 • 丰富的企业级特性 • 多租户隔离 — 百万Topics — 跨地域复制 • Pulsar 的⽣态和社区 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 数据均匀分布 ⽆re-balance Pulsar: 云原⽣的架构优势 https://jack-vanlightly.com/sketches/2018/10/2/kafka-vs-pulsar-rebalancing-sketch • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper Apache0 码力 | 39 页 | 12.71 MB | 6 月前0.03 Apache Pulsar,云原生时代的消息平台 - 翟佳
持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ • ⾼性能 + 强⼀致性 • ⽀持统⼀的 Queue 和 Stream 的接⼝。 • 丰富的企业级特性 • 多租户隔离 — 百万Topics — 跨地域复制 • Pulsar 的⽣态和社区 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 数据均匀分布 ⽆re-balance Pulsar: 云原⽣的架构优势 https://jack-vanlightly.com/sketches/2018/10/2/kafka-vs-pulsar-rebalancing-sketch • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper Apache0 码力 | 39 页 | 12.71 MB | 6 月前0.03
 2022 Apache Ozone 的最近进展和实践分享能否提供⾼并发读取和写⼊ 是否兼容主流API,如HDFS/S3 是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 架构 应⽤对接 安全 加密 HDFS现有的⼀些解决⽅案 Namenode Federation Router Based Federation 是否需要⼀个新的⼤数据存储? 现有的对象存储⽅案 GC带来的⽆ 响应问题 运维价值 Apache Ozone – 使⽤场景 #2 • 可以快速的对接已适配S3 接⼝的应⽤ • 减少数据在多个平台间的迁移 • 使⽤单⼀的API协议来应对混合云架构 业务价值 • 集约化的⼀套存储来⾯向不同的业务负载 • 更易于运维的控制⾯ • 只需要⼀个运维团队⽽不是多个 运维价值 OZONE STORAGE AI/ML HIVE/IMPALA/0 码力 | 35 页 | 2.57 MB | 1 年前3 2022 Apache Ozone 的最近进展和实践分享能否提供⾼并发读取和写⼊ 是否兼容主流API,如HDFS/S3 是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 架构 应⽤对接 安全 加密 HDFS现有的⼀些解决⽅案 Namenode Federation Router Based Federation 是否需要⼀个新的⼤数据存储? 现有的对象存储⽅案 GC带来的⽆ 响应问题 运维价值 Apache Ozone – 使⽤场景 #2 • 可以快速的对接已适配S3 接⼝的应⽤ • 减少数据在多个平台间的迁移 • 使⽤单⼀的API协议来应对混合云架构 业务价值 • 集约化的⼀套存储来⾯向不同的业务负载 • 更易于运维的控制⾯ • 只需要⼀个运维团队⽽不是多个 运维价值 OZONE STORAGE AI/ML HIVE/IMPALA/0 码力 | 35 页 | 2.57 MB | 1 年前3
共 14 条
- 1
- 2













