积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(6)数据库(5)MySQL(5)前端开发(3)综合其他(2)JavaScript(2)人工智能(2)Kubernetes(2)RocketMQ(2)后端开发(1)

语言

全部中文(简体)(18)

格式

全部PDF文档 PDF(16)PPT文档 PPT(2)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 数据库
  • MySQL
  • 前端开发
  • 综合其他
  • JavaScript
  • 人工智能
  • Kubernetes
  • RocketMQ
  • 后端开发
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek 从入门到精通

    • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计 • 推理模型:简洁指令,聚焦目标,信任其内化能力。(“要什么直接说”)。 • 通用模型:结构化、补偿性引导(“缺什么补什么”)。 避免误区 • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 Ubuntu 桌面培训 2010

    . . . . . . . . . . . . . . . . . . . . . . . . . . 245 V.III.II 在 Ubuntu 中玩 Microsoft Windows 操作系统上的 游戏 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 IX.II 系统文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 X.III.I 在启动时自动运行系统命令 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 X.III.II 更改引导时的默认操作系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    MySQL 架构设计—高可用架构  系统优化:硬件、架构 系统优化:硬件、架构  服务优化 服务优化  应用优化 应用优化 MySQL MySQL 优化方式 优化方式 影响性能的因素 影响性能的因素 应用程序 应用程序 查询 查询 事务管理 事务管理 数据库设计 数据库设计 数据分布 数据分布 网络 网络 操作系统 操作系统 硬件 硬件  使用好的硬件,更快的硬盘、大内存、多核 读写分离;数据库分表、数据库切片(分 读写分离;数据库分表、数据库切片(分 布式),也考虑使用相应缓存服务帮助 布式),也考虑使用相应缓存服务帮助 MySQL MySQL 缓解访问 缓解访问 压力 压力 系统优化 系统优化  配置合理的 配置合理的 MySQL MySQL 服务器,尽量在应用本身达到一 服务器,尽量在应用本身达到一 个 个 MySQL MySQL 最合理的使用 最合理的使用  针对 innodb_buffer_pool_size 32M 10G InnoDB 使用一个缓冲池来保存索引和原始数据 , 这里你设置越大 , 你在存取表里面数据时所需要的 磁盘 I/O 越少,一般是内存的一半,不超过 2G , 否则系统会崩溃,这个参数非常重要 innodb_additional_mem _pool_size 2M 512M InnoDB 用来保存 metadata 信息 , 如果内存是 16G ,最好本值超 1024M
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    加一来实现对所有 queue 的轮询 如果入参 lastBrokerName 不为空,代表上次选择的 queue 发送失败,这次选 择应该避开同一个 queue 3) Producer 发消息系统重试: 发送失败后,重试几次 retryTimesWhenSendFailed = 2 发送消息超时 sendMsgTimeout = 3000 Producer 通过 selectOneMessageQueue 随机选择一台 producer 查询消息,根据 commitLogOffset 和 msgSize 到 commitlog 查找消息 向 Producder 发起请求,请求 code 类型为 CHECK_TRANSACTION_STATE,producer 的 DefaultMQProducerImpl. checkTransactionState()方法来处理 broker 定时回调的请求, 已经提供了很全面的实现, consumer 通过长轮询拉取消息后回调 MessageListener 接口实现完成消费, 应用系统只要 MessageListener 完成业务逻辑即可 2. Pull 方式:完全由业务系统去控制,定时拉取消息,指定队列消费等等, 当然这里需要 业务系统去根据自己的业务需求去实现 下面介绍默认以 push 方式为主, 因为绝大多数是由 push 消费方式来使用
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    ...................................................................................... 13 6.2 文件系统 .................................................................................................. 的多个关键特性的实现原理,幵对消息中间件遇到的各种问题迕行总结,阐述 RocketMQ 如何解决返些问题。文中主要引用了 JMS 规范不 CORBA Notification 规范,规范为我们设计系统挃明了 方吐,但是仍有丌少问题规范没有提及,对亍消息中间件又至关重要。RocketMQ 幵丌遵循任何规范,但是参考了 各种规范不同类产品的设计思想。 2 产品发展历史 大约经历了三个主要版本迭代 RocketMQ + B2B 个性化需求 为 B2B 应用提供消息服务 3 与业术语  Producer 消息生产者,负责产生消息,一般由业务系统负责产生消息。  Consumer 消息消费者,负责消费消息,一般是后台系统负责异步消费。  Push Consumer Consumer 的一种,应用通常吐 Consumer 对象注册一个 Listener 接口,一旦收到消息,Consumer
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 2、对数据集进行深入分析和数据挖掘 任务 DeepSeek R1 能够准确对数据进行分类,从多个维度进行梳理和分析,借助可视化图表进行数据挖掘,基于分析结 果提供可行建议,但整体数据挖掘深度较浅,缺少对不同类型数据直接关联性的探究。 第一轮对话: 第二轮对话: (基于初步分析结果,选择其中一部分或某个方 向进行深入的数据挖掘) 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因 策制定、质量评估或产品验证的最终依据。 数据可视化 基于titanic遇难者数据分析结果绘制可 视化图表 任务  Open AI o3mini的数据可视化能力突出,能够直接高效地生成多种类型可视化图表,准确度高;  DeepSeek R1、Kimi k1.5均能基于分析结果提供多种可视化图表绘制方案,但都需要依靠运行 Python代码才能完成绘图任务,部分代码会出现错误 Open
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Kubernetes Operator 实践 - MySQL容器化

    Kubernetes Operator 实践 —— MySQL 容器化 刘林 搜狗资深工程师 关于我 搜狗商业平台研发部 资深开发工程师 l 主要从事商业平台研发工作,在构建高性能、高可用大规模 系统方面有丰富的实践经验 l 目前专注于云计算、DevOps 等相关领域,负责搜狗商业云 平台的设计研发工作 刘林 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx (Load Balancer) Kafka Zookeeper etcd AppEngine(Resin/Tomcat…) 统一服 务管理 Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 ü custom resource definition(CRD) ü custom controller Operator 是什么 • Kubernetes 中一切都可视为资源 • 默认资源类型:如 Pod、Service、Volume 等 • Kubernetes 1.7 之后增加了 CRD 自定义资源 • 二次开发扩展 Kubernetes API CRD 的基本原理 ① 观察资源的当前状态
    0 码力 | 42 页 | 4.77 MB | 1 年前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.1

    匹配日期 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.4. window 操作系统文件路径. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.5. 匹配 id. . . . . . . . . . ,受益匪浅,从每次遇到正则问题,从百度到自己书写,都离不开书中的知识。并且此书通俗易懂, 条理清晰,每次阅读都会得到新的收获。感谢老姚,支持你,加油! — _周末 对于正则的知识,之前看得总是零零碎碎的,没有好好地去系统学习过,所以在方面知识体系相对薄 弱。通过这本正则迷你书,总算有一个清晰掌握。一直以来比较关注作者的笔记和文章,自身在JS的 成长上也受益于姚哥帮助,感谢他对这本书的付出,希望这本迷你书能帮助更多想学习正则的同学。 第一章 正则表达式字符匹配攻略 正则表达式是匹配模式,要么匹配字符,要么匹配位置。 请记住这句话。 然而关于正则如何匹配字符的学习,大部分人都觉得这块比较杂乱。 毕竟元字符太多了,看起来没有系统性,不好记。本章就解决这个问题。 内容包括: • 两种模糊匹配 • 字符组 • 量词 • 分支结构 • 案例分析 1.1. 两种模糊匹配 如果正则只有精确匹配是没多大意义的,比如 /hello/,也只能匹配字符串中的
    0 码力 | 89 页 | 3.42 MB | 11 月前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.0

    匹配日期 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.4. window 操作系统文件路径. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.5. 匹配 id. . . . . . . . . . ,受益匪浅,从每次遇到正则问题,从百度到自己书写,都离不开书中的知识。并且此书通俗易懂, 条理清晰,每次阅读都会得到新的收获。感谢老姚,支持你,加油! — _周末 对于正则的知识,之前看得总是零零碎碎的,没有好好地去系统学习过,所以在方面知识体系相对薄 弱。通过这本正则迷你书,总算有一个清晰掌握。一直以来比较关注作者的笔记和文章,自身在JS的 成长上也受益于姚哥帮助,感谢他对这本书的付出,希望这本迷你书能帮助更多想学习正则的同学。 第一章 正则表达式字符匹配攻略 正则表达式是匹配模式,要么匹配字符,要么匹配位置。 请记住这句话。 然而关于正则如何匹配字符的学习,大部分人都觉得这块比较杂乱。 毕竟元字符太多了,看起来没有系统性,不好记。本章就解决这个问题。 内容包括: • 两种模糊匹配 • 字符组 • 量词 • 分支结构 • 案例分析 1.1. 两种模糊匹配 如果正则只有精确匹配是没多大意义的,比如 /hello/,也只能匹配字符串中的
    0 码力 | 89 页 | 3.42 MB | 11 月前
    3
  • pdf文档 强大的音视频处理工具: FFmpeg

    le.mp4 从视频中提取出字幕 ffmpeg -i video_with_soft_subtitle.mp4 -map 0:s:0 extracted_subtitle.srt 字幕类型转换 srt转换为ass ffmpeg -i subtitle.srt subtitle.ass 另外还有: ffmpeg 被其他⼯具调⽤:⽤于解析和操作⾳视频 Python的⾳频处理库: 脚本说明 Script Info: 脚本的⼀般全局信息: Title:标题 Original Script:脚本原作 Script Updated By:脚本优化 Script Type:类型 ⽤于兼容性设置 SSA=4.00 ASS=4.00+ PlayResX & PlayResY:屏幕宽⾼ PlayDepth:决定颜⾊数量 Timer:定时器 V4 Styles: 定 powered by Gitbook最后更新: 2021-09-13 16:39:24 获取 56 指定字幕⽂字属性 此处介绍嵌⼊字幕时,指定字幕⽂字的各种属性,⽐如 字体⼤⼩ 、 字体 类型 、 颜⾊ 、 透明度 等 srt字幕:加force_style参数 ass字幕:在ass字幕中设置参数 具体设置成什么值,以及效果如何,可借助于软件Aegisub去设置和预览 举例1
    0 码力 | 73 页 | 11.57 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
清华华大大学清华大学DeepSeek入门精通Ubuntu桌面培训MySQL消息中间中间件消息中间件RocketMQ原理解析开发指南DeepResearch科研KubernetesOperatorJavaScript正则表达达式表达式正则表达式迷你1.1mediaprocessffmpeg
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩