积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(2)人工智能(2)数据库(1)系统运维(1)Linux(1)MySQL(1)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 4 个.
  • 全部
  • 综合其他
  • 人工智能
  • 数据库
  • 系统运维
  • Linux
  • MySQL
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Ubuntu 桌面培训 2010

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 VII 处理大多数图像和照片 309 VII.I 图像软件介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 查看和管理照片 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 VII.II.I 向 F-Spot 中导入图像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 VII.II.II 查看照片 . . . . . . . . VII.V.I 检查扫描仪的兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 VII.V.II 扫描图像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 VII.VI本课小结
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    角色扮演型提示语:要求AI扮演特定角色,模拟 特定场景。 4. 创意型提示语:引导AI进行创意写作或内容生成。 5. 分析型提示语:要求AI对给定信息进行分析和推 理。 6. 多模态提示语:结合文本、图像等多种形式的 输入。 表1-1-1提示语的本质特征 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语:Hello, world” 上下文提供 者 为AI提供必要的背景信息 成一个全面的分析报告。 2. 请根据[主题]创建一个包含图像和数据可视化的报告,详细描述可视化方法。 3. 请设计一个融合文本、图像、音频或视频元素的多媒体内容,增强内容的丰富 性。 4. 请设计一个互动数据展示方案,使读者可以与数据进行互动,并详细描述设计 步骤。 5. 请将不同媒体形式的内容进行联动展示,例如将文字内容与图像和数据可视化 结合起来。 6. 请选用合适的数据可视化 (7)定位声明: 综合以上要素,创作一个简洁有力的定位声明。这个声明应清晰传达品牌是什么、为 谁服务、提供什么独特价值。 (8)视觉识别: 提出2—3个能直观体现品牌定位的视觉元素建议(如标志、色彩、图像风格等)。 评估标准: - 清晰度:定位是否易于理解和记忆 - 独特性:是否明显区别于竞争对手 - 相关性:是否与目标受众的需求和期望高度相关 - 可信度:是否基于品牌的实际优势和能力 - 持续性:是否具有长期发展潜力
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 思维链,显著提高复杂任务的推理准确性,其长链推理能力在数学、 编程和自然语言推理等任务中表现出色。 • 多模态任务处理:DeepSeek R1 在多模态任务中表现出色,能够 处理复杂场景下的逻辑、公式识别及自然图像等问题,显示出其在 多模态任务中的广泛应用潜力。 训练方法:数据冷启,阶段递进 DeepSeek R1 采用了冷启动数据和多阶段训练的策略,以进一步提升模型的推理能力和可读性。  冷启动数据 1.多步骤 自主研究 2.端到端强化学习 3.深度信息整合 输入 提示 文本、图像、 PDF 解释、推理 调整 优化 查找、分析 综合数百个 在线资源 以研究分析师的水平 创建一份综合报告 端到端强化学习 训练 规划执行多步 骤研究流程 实时调整策略 回溯修正错误 文本 PDF 图像 【多格式数据】 支持搜索多格式数据, 整合多模态信息,生 成带引用和思考过程 总结的报告
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 MySQL 8.0.17 调优指南(openEuler 20.09)

    所处层级选择优化的方式方法。 下面介绍MySQL数据库具体的调优思路和分析过程,如图1所示。 调优分析思路如下: 1. 很多情况下压测流量并没有完全进入到服务端,在网络上可能就会出现由于各种 规格(带宽、最大连接数、新建连接数等)限制,导致压测结果达不到预期。 2. 接着看关键指标是否满足要求,如果不满足,需要确定是哪个地方有问题,一般 情况下,服务器端问题可能性比较大,也有可能是客户端问题(这种情况比较 小)。
    0 码力 | 11 页 | 223.31 KB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
Ubuntu桌面培训清华华大大学清华大学DeepSeek入门精通DeepResearch科研MySQL8.017调优指南openEuler20.09
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩