MySQL高可用 - 多种方案................................................................................ 21 5.5.4 DRBD 的管理维护 ............................................................................................ 21 ........................................................................... 23 5.5.7 Heartbeat 的管理 .......................................................................................... 25 5.5 ................................................................................. 27 6.5.4 MMM 的管理 ..................................................................................................0 码力 | 31 页 | 874.28 KB | 1 年前3
清华大学 DeepSeek 从入门到精通识和上下文。 提示语的基本元素可以根据其功能和作用分为三个大类:信息类元素、结构类元素和控制类元素: 结构类元素用于定义生成内容的组织形式和呈现方式, 决定了AI输出的结构、格式和风格。 控制类元素用于管理和引导AI的生成过程,确保输出 符合预期并能够进行必要的调整,是实现高级提示语 工程的重要工具。 提示语的DNA:解构强大提示语的基本元素 提示语元素组合矩阵 提示语元素协同效应理论的核心观点包括: 源域选择:根据任务选择合适的类比源域 2. 映射点识别:确定源域和目标域间关键对应点 3. 类比生成:创造性地将源域概念应用于目标域 4. 类比细化:调整和优化类比,确保其恰当性和 新颖性 结构映射 属性转移 关系对应 抽象模式提取 应用示例 概念嫁接策略(CGS):创造性融合 �CGS的理论基础: CGS借鉴了认知科学中的概念整合理论,概念嫁接策略的基本构成如下: �CGS实施步骤: 1. 知识转移技术(KTT):跨域智慧应用 �KTT的理论基础: KTT基于认知科学中的迁移学习理论和组织学习理论。 提出了以下关键步骤: �KTT实施步骤: 1. 定义问题:明确目标领域需要解决的问题或创新点 2. 寻找源域:搜索可能包含相关知识或方法的其他领域 3. 知识提取:从源域提取关键的知识、技能或方法 4. 相似性分析:分析源域和目标域之间的结构相似性 5. 转移策略设计:制定知识从源域到目标域的转移策略0 码力 | 103 页 | 5.40 MB | 8 月前3
Kubernetes Operator 实践 - MySQL容器化JavaScript Java Python 质量要求高 业务响应快 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx (Load Balancer) Kafka Zookeeper etcd AppEngine(Resin/Tomcat…) 统一服 务管理 Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 SOA服务框架 DevOps 测 试 账户 搜狗商业平台基础平台 物料 计费 管理界面 项目 管理 CI&&CD 统一配 置中心 Cluster2 Node Node Node Node 商业云平台 BizCloud • 弹性伸缩能力不足 • 机器资源利用率不高 • 服务管理复杂 问题 有状态服务的需求越来越多 有状态服务容器化 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 无状态服务 服务调度 有状态服务集群 服务调度 状态保存 集群管理 有状态服务 服务调度 状态保存 带来的新挑战 服务调度 状态存储 集群管理 成员管理 扩缩容 故障迁移 高可用 CoreOS 提出了 operator Deployment StatefulSet PV/PVC StorageClass0 码力 | 42 页 | 4.77 MB | 1 年前3
RocketMQ v3.2.4 开发指南(1)、(2)、(3)、(4)四种情冴都属亍硬件资源可立即恢复情冴,RocketMQ 在返四种情冴下能保证消息丌丢,戒 者丢失少量数据(依赖刷盘方式是同步迓是异步)。 (5)、(6)属亍单点故障,丏无法恢复,一旦収生,在此单点上的消息全部丢失。RocketMQ 在返两种情冴下,通 过异步复制,可保证 99%的消息丌丢,但是仍然会有极少量的消息可能丢失。通过同步双写技术可以完全避免单点, 已经消费成功的消息,由亍业务上需求需要重新消费,要支持此功能,Broker 在吐 Consumer 投递成功消息后,消息仍然需要保留。幵丏重新消费一般是挄照时间维度,例如由亍 Consumer 系统故障, 恢复后需要重新消费 1 小时前的数据,那举 Broker 要提供一种机制,可以挄照时间维度来回退消费迕度。 RocketMQ 支持挄照时间回溯消费,时间维度精确到毫秒,可以吐前回溯,也可以吐后回溯。 Offset、Size、TagsCode 消息索引服务 (存储消息Key与消息在CommitLog 中的Offset对应关系) 事务状态服务 (存储每条事务消息的状态) 定时消息服务 (管理需要定时投递的消息) Offset、Key Offset、State(P/C/R) Offset、Delaylevel 项目开源主页:https://github.com/alibaba/RocketMQ0 码力 | 52 页 | 1.61 MB | 1 年前3
Ubuntu 桌面培训 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 III.I.I 网络管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 III.I.II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 VI.IV 使用 Nautilus 管理文件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 VI.IV.I Nautilus . . . . . . . . . . . . . . 273 VI.V 软件包管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 VI.V.I 软件包管理器种类 . . . . . . . . . . . . . . . . . . .0 码力 | 540 页 | 26.26 MB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单案、法律意见书等,提高律师工作效率。 • 智能医疗数据分析与诊断:构建智能医疗 平台,分析病历、检查报告和基因数据,帮助 医生提供更准确的诊断与治疗方案。 • 金融风险预测与管理:开发金融风险分析 工具,收集并分析市场数据,预测风险并为金 融机构提供管理建议。 • 智能文学创作辅助:为作家提供创作灵感 和文本构思,生成符合中文文学传统的故事情 节和诗句,助力突破创作瓶颈。 • 智能广告创意生成:根据产品特点和目标 高频交易数据分析:利用o3mini快速处理 高频交易数据,识别市场趋势和交易模式,为 交易者提供实时决策支持。 • 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 转化文献为连贯文章:可以将现有的文献资料进行分析 和整合,转化为逻辑连贯的新文章,为学者和知识工作 者提供了极大的便利。 多智能体协作对话:Co-STORM模式引入了协作对话 机制,并采用轮次管理策略,实现流畅的协作式AI学术 研究。 用户体验对比:使用步骤 PubScholar平台官网:https://pubscholar.cn/ 输入关键词:进入官网后,在搜索框键入关键词进行文献检索。0 码力 | 85 页 | 8.31 MB | 8 月前3
基于 KUBERNETES 的 容器器 + AI 平台of R&D 提纲 构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 • 单『默认仓 库』,多仓库集成 管理理集群和节点 • 技术概览 • cloud provider • custom resource • ansible 管理理镜像仓库 • Cargo (内部项⽬目)- ⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 com/caicloud/charts • https://github.com/caicloud/helm-registry Rudder 技术架构 ⼀一套基于 k8s 控制器器模式的原⽣生的应⽤用管理理 和编排运⾏行行时 安全性与扩展性:从 k8s 原⽣生模式中获益 状态可读:跟踪所有 k8s 对象状态 版本化:快速从历史版本回滚 构建应⽤用 典型 CI/CD 流程 CAICLOUD/CYCLONE0 码力 | 19 页 | 3.55 MB | 1 年前3
2022 Apache Ozone 的最近进展和实践分享⽂件系统的层级关系是通过扁平的KV路径抽象实现的 Apache Ozone – 数据服务的核⼼设计 Apache Ozone – 数据服务的核⼼设计 1. OM – 管理Ozone的Namespace ,也使⽤了RocksDB 2. SCM – 管理Ozone集群和数据 3. Recon Server – 监控Ozone集群 4. DataNode – 负责存储和汇报Storage Containers /vol/buck1/dir1/dir2/dir3/file-n Ozone Key的存储 ⽬录 ⽂件 删除/重命名⽬录 耗时 对象存储:采⽤ KV ⽅式管理对象元数据,⽆ 需管理元数据之间的关系 ⽂件系统:额外地,需要采⽤树结构作为索 引,管理元数据之间的关系 ⽂件系统优化 ● FILE_SYSTEM_OPTIMIZED (FSO) : ⽀持纯粹的⽂件语义, 有限的 S3 兼容性 ⽂件的存储Key格式:0 码力 | 35 页 | 2.57 MB | 1 年前3
MySQL 8.0.17 调优指南(openEuler 20.09)MySQL 介绍 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,目前属于Oracle 旗下产品。MySQL是最流行的关系型数据库管理系统之一,在Web应用方面,MySQL 是最好的RDBMS (Relational Database Management System,关系数据库管理系 统)应用软件之一。 MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将0 码力 | 11 页 | 223.31 KB | 1 年前3
消息中间件RocketMQ原理解析 - 斩秋Broker 初始化加载本地配置,配置信息是以 json 格式存储在本地, rocketmq 强依赖 fastjson 作转换, RocketMq 通过 ConfigMananger 来管理配置加载以及持久化 1. 加载 topic 配置${user.home}/store/config/topics.json { "dataVersion":{ "counter":2 消费队列中 (3) 按消费端 group 分组死信队列,如果消费端重试超过指定次数,发送死信队列 (4) 每个 ConsumeQueue 可以由多个文件组成无限队列被 MapedFileQueue 对象管理 2) CommitLog 消息存放物理文件,每台 broker 上的 commitLog 被本机器所有 queue 共享不 做区分 文件地址:${user.home} \ 的请求根据某个 topic 获取所有到 broker 的路由信息 二:Namesrv 启动流程: 三:RouteInfoManager 路由信息 RouteInfoManager 类的管理 brokerName 表示一组 broker,如:一个叫 brokerName=broker-a, 可能包括一个 master 跟 它的多个 slave Map0 码力 | 57 页 | 2.39 MB | 1 年前3
共 13 条
- 1
- 2













