Kubernetes Operator 实践 - MySQL容器化Kubernetes Operator 实践 —— MySQL 容器化 刘林 搜狗资深工程师 关于我 搜狗商业平台研发部 资深开发工程师 l 主要从事商业平台研发工作,在构建高性能、高可用大规模 系统方面有丰富的实践经验 l 目前专注于云计算、DevOps 等相关领域,负责搜狗商业云 平台的设计研发工作 刘林 1. 背景介绍 2. Operator 的基本原理 3. MySQL BizNginx (Load Balancer) Kafka Zookeeper etcd AppEngine(Resin/Tomcat…) 统一服 务管理 Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 权 监 控 IaaS Registry SOA服务框架 DevOps 测 试 Cluster2 Node Node Node Node 商业云平台 BizCloud • 弹性伸缩能力不足 • 机器资源利用率不高 • 服务管理复杂 问题 有状态服务的需求越来越多 有状态服务容器化 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 无状态服务 服务调度 有状态服务集群 服务调度 状态保存 集群管理 有状态服务0 码力 | 42 页 | 4.77 MB | 1 年前3
Ubuntu 桌面培训 2010了,可是,我装的软件并不多,这是怎么回事? . . . . . . . . . . 488 XI.II.VIII我安装的是 Beta/RC 版,我可以升级到正式版吗? . . . . . . 489 XI.III 系统管理和个性化配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 XI.III.I Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 IV.31 格式化后的表格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 VIII.7安装插件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 VIII.8激活插件 . . . . . . . . . . . . . . . . . .0 码力 | 540 页 | 26.26 MB | 1 年前3
RocketMQ v3.2.4 开发指南............................................................................ 16 7.1 单机支持 1 万以上持丽化队列 ................................................................................................. 月份上线,在淘宝内部被广泛使用。 三、RocketMQ 3.x 基亍公司内部开源共建原则, RocketMQ 项目只维护核心功能,丏去除了所有其他运行时依赖,核心功能最 简化。每个 BU 的个性化需求都在 RocketMQ 项目乀上迕行深度定制。RocketMQ 吐其他 BU 提供的仁仁是 Jar 包,例如要定制一个 Broker,那举只需要依赖 rocketmq-broker 返个 jar 淘宝个性化需求 为淘宝应用提供消息服务 项目开源主页:https://github.com/alibaba/RocketMQ 2 com.alipay.zpullmsg v1.0 = RocketMQ + 支付宝个性化需求 为支付宝应用提供消息服务 com.alibaba.commonmq v1.0 = Notify + RocketMQ + B2B 个性化需求0 码力 | 52 页 | 1.61 MB | 1 年前3
清华大学 DeepSeek 从入门到精通代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。0 码力 | 103 页 | 5.40 MB | 8 月前3
2022 Apache Ozone 的最近进展和实践分享是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 架构 应⽤对接 安全 加密 HDFS现有的⼀些解决⽅案 Namenode Federation Router Based Federation 是否需要⼀个新的⼤数据存储? 现有的对象存储⽅案 ⽆法很好的横向扩展 HDFS的扩展性 达到了上限 ⽆法接受私有化 的数据存储系统 公有云的对象存储服务 ⽆法在线下部署 ⽬录 • Apache Hadoop HDFS⾯临的问题 • Apache Ozone介绍 • Apache Ozone适⽤场景 • Apache Ozone的最近进展 • Apache Ozone的实践分享 Apache Ozone • Ozone是 ⼀个分布式的KV对象存储 可扩展⾄数⼗亿个对象,从⽽对云原⽣类的应⽤更友好 AI/ML HIVE/IMPALA/SPARK KAFKA / FLINK 计算 OTHER WORKLOADS OTHER WORKLOADS X • 可⽤于承载实时和批处理的业务 • 扩展性提升 • ⽆需改变或改造业务应⽤代码 • 降低控制平⾯的节点数和服务依赖 业务价值 • 降低⼤规模集群的运维难度 • 可通过HDFS API和Distcp进⾏快速迁移 • 降低系统恢复时间0 码力 | 35 页 | 2.57 MB | 1 年前3
GPU Resource Management On JDOS,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态0 码力 | 11 页 | 13.40 MB | 1 年前3
基于 KUBERNETES 的 容器器 + AI 平台基于 KUBERNETES 的 容器器 + AI 平台 如何助⼒力力企业数字化和智能化转型 xiaoqin@caicloud.io VP of R&D 提纲 构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) openstack/kuryr- kubernetes 运⾏行行和构建应⽤用 跑在 KUBERNETES 上的应⽤用 • k8s 基础资源之外 • 资源分组和整体状态 • 重⽤用 YAML 配置 • 版本化 • 启动依赖 • Helm 很棒,但是 …… 典型企业应⽤用的架构 CAICLOUD/RUDDER • 2 CRDs - Release, Release History • 1 控制器器 com/caicloud/helm-registry Rudder 技术架构 ⼀一套基于 k8s 控制器器模式的原⽣生的应⽤用管理理 和编排运⾏行行时 安全性与扩展性:从 k8s 原⽣生模式中获益 状态可读:跟踪所有 k8s 对象状态 版本化:快速从历史版本回滚 构建应⽤用 典型 CI/CD 流程 CAICLOUD/CYCLONE • 开源 • https://github.com/caicloud/cyclone0 码力 | 19 页 | 3.55 MB | 1 年前3
MySQL高可用 - 多种方案方案优缺点 优点: 安装配置简单,实现方便,高可用效率好,可以根据服务与系统的可用性 多方面进行切换。 可以将写 VIP 和读 VIP 分别进行设置,为读写分离做准备。 扩展不是很方便。 可以在后面添加多个从服务器,并做到负载均衡。 缺点: 在启动或者恢复后会立即替换掉定义的 sorry_server,因此如果要实现指 定条件替换或者不替换需要通过其他方式实现,比如:临时更改 3.3 方案优缺点 优点: 实现方便,高可用效率好,可以根据服务与系统的可用性多方面进行切换。 可以将写 VIP 和读 VIP 分别进行设置,为读写分离做准备。 扩展很方便。可以在后面添加多个从服务器,并做到负载均衡。 缺点: 在启动或者恢复后会立即替换掉定义的 sorry_server,因此如果要实现指 定条件替换或者不替换需要通过其他方式实现,比如:临时更改 mysql 不会启动起来,因此这对于 mysql 复制是很不利的。因此需要做好监控,发生切换以后需要手动去启动。或者 mysql 之间不使用复制,而是用共享存储或者 DRBD,这样能解决这个问题。 不方便扩展。 可能会发生脑裂问题。 4.3 方案架构图 4.4 适用场景 该方案适合只有两台数据库的情况,访问量不大,不需要实现读写分离的情况。 4.5 方案实战 4.5.1 实战环境介绍0 码力 | 31 页 | 874.28 KB | 1 年前3
消息中间件RocketMQ原理解析 - 斩秋一:consumer 启动流程 指定 group 订阅 topic 注册消息监听处理器,当消息到来时消费消息 消费端 Start 复制订阅关系 初始化 rebalance 变量 构建 offsetStore 消费进度存储对象 启动消费消息服务 向 mqClientFactory 注册本消费者 启动 client 端远程通信 定时从 nameserver 获取 topic 路由信息 定时清理下线的 borker 定时向所有 broker 发送心跳信息,(包括订阅关系) 定时持久化 Consumer 消费进度(广播存储到本地,集群存储到 Broker) 统计信息打点 动态调整消费线程池 启动拉消息服务 PullMessageService ProccessQueueTable1) 比对 mqSet 将多余的队列删除, 当 broker 当机或者添加,会导致分配到 mqSet 变 化, a) 将不在被本 consumer 消费的 messagequeue 的 ProcessQueue 删除, 其实是设 置 ProcessQueue 的 droped 属性为 true b) 0 码力 | 57 页 | 2.39 MB | 1 年前3
Apache Pulsar,云原生时代的消息平台 - 翟佳
io Apache Pulsar 要解决的问题 • 企业需求和数据规模 • 多租户 - 百万Topics - 低延时 - 持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错 ⽆感知容错 零数据catchup streamnative.io Bookie容错 应⽤⽆感知 并发可控 Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper Apache BookKeeper: 企业级流存储层 分布式⽇志/流存储 • 低延时、⾼吞吐、持久化 • 强⼀致 (repeatable read consistency) • ⾼可⽤ • 单节点可以存储很多⽇志 • I/O隔离 Apache BookKeeper: 诞⽣场景 streamnative0 码力 | 39 页 | 12.71 MB | 6 月前0.03
共 15 条
- 1
- 2













