清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单和文本构思,生成符合中文文学传统的故事情 节和诗句,助力突破创作瓶颈。 • 智能广告创意生成:根据产品特点和目标 受众自动生成创意广告文案和宣传语,提高广 告创作效率。 • 中小企业AI定制化服务:为中小企业提 供定制化的AI解决方案,如智能客服、营销 和办公工具,提升企业竞争力。 • 开源AI教育平台:借助DeepSeek R1 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 确保文献数据的准确性与可信 度,为综述内容的真实性提供 坚实保障 涵盖全球科技论文、专利文献、 科学数据、学位论文、预印本、 图书专著及开放资源 中国知网数据库,涵盖海量的 中文文献 通过必应搜索引擎收集数据, 确保来源的广泛性,但主要依 赖互联网主流来源,可能包含 推广内容,需进一步筛选和验 证 文本类型 文本更加贴近学术综述,内容 涵盖了研究现状、简要评述和 主要参考文献,结构完整,生 了坚实的基础, 使模型在后续的强化学习阶段能够更稳定地学习和优化。它解 决了纯强化学习训练中可能出现的可读性差和语言混杂等问题。 第一阶段:推理 导向的强化学习 基 于 冷 启 动 数 据 微 调 后 的 基 础 模 型 , 进 行 大 规 模 强 化 学 习 。 此 阶 段 引 入 语 言 一 致 性 奖 励 , 优 化 模 型 在 数 学 、 编 程 等 结 构 化 任 务0 码力 | 85 页 | 8.31 MB | 8 月前3
Ubuntu 桌面培训 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 IX.VII购买商业服务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 III.12 可用的搜索引擎 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 III.27 为接收邮件选择服务器类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 III.28 提供 POP 服务器信息 . . . . . . . . . . . . . . . . . . . . . .0 码力 | 540 页 | 26.26 MB | 1 年前3
清华大学 DeepSeek 从入门到精通复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体 目标 识别主要 任务 细化子任 务 定义微任 务 设计对应 提示语 建立任务 间联系 加入反馈 调整机制 SPECTRA任务分解模型 • Segmentation(分割):将大任务分为独立但相关的 部分 • Prioritiz 传统图书馆:知识储备、系统分类、安静学习、专业指导 (2)共同特征: • 信息存储和检索 • 用户群体链接 • 知识分享 (3)融合点: • 实时知识互动 • 知识深度社交网络 • 数字化图书馆员服务 • 个性化学习路径 输入空间定义 明确要融合的两个或多个概念领域 通用空间识别 找出输入空间之间的共同特征 选择性投射 从输入空间选择相关元素进行融合 涌现结构构建 在融合空间中创造新的、创新结构 简单行动设计:要求设计一个简单、具体的第一步行动 4. 清晰的收益阐述 利益点强化:要求明确列出采取行动后的具体收益 5. 社会证明的运用 案例/数据要求:要求加入用户见证或数据支持 为[产品/服务名称]创作一则促销文案,目标是有效引导目标受众立即采取行 动。请遵循以下结构和要求: (1)注意力抓取(30字以内): 创作一个引人注目的标题 要求:包含行动词和具体数字,如“立省30%”、“7天见效”等0 码力 | 103 页 | 5.40 MB | 8 月前3
谈谈MYSQL那点事二进制层次的文件可以移植 二进制层次的文件可以移植 (Linux (Linux Windows) Windows) • 访问速度飞快,是所有 访问速度飞快,是所有 MySQL MySQL 文件引擎中速度最快的 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 事务、外键约束等 • Table level lock Table level lock ,作为备库,提供读取服务,减少 M1(WR) 的 压力,而另外一个 idc 机房的 M2 只做 standby 容灾方 式的用途。 当然这里会用到 3 台数据库服务器,也许会增加采 购压力,但是我们可以提供更好的对外数据服务的能力和 途径,实际中尽可能两者兼顾。 MySQL 架构设计—高可用架构 系统优化:硬件、架构 系统优化:硬件、架构 服务优化 服务优化 应用优化 ,专业的 存储服务器( 存储服务器( NAS NAS 、 、 SAN SAN ) ) 设计合理架构,如果 设计合理架构,如果 MySQL MySQL 访问频繁,考虑 访问频繁,考虑 Master/Slave Master/Slave 读写分离;数据库分表、数据库切片(分 读写分离;数据库分表、数据库切片(分 布式),也考虑使用相应缓存服务帮助 布式),也考虑使用相应缓存服务帮助 MySQL0 码力 | 38 页 | 2.04 MB | 1 年前3
Kubernetes Operator 实践 - MySQL容器化等相关领域,负责搜狗商业云 平台的设计研发工作 刘林 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 搜狗商业平台 技术体系广 服务多迭代快 搜狗产品矩阵 商业平台 信息流广告 搜索广告 品牌广告 代理商 广告主 技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ AppEngine(Resin/Tomcat…) 统一服 务管理 Kubernetes 模板管理 自动化测试 部署中心 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 权 监 控 IaaS Registry SOA服务框架 DevOps 测 试 账户 搜狗商业平台基础平台 物料 计费 管理界面 项目 管理 CI&&CD 统一配 弹性伸缩能力不足 • 机器资源利用率不高 • 服务管理复杂 问题 有状态服务的需求越来越多 有状态服务容器化 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 无状态服务 服务调度 有状态服务集群 服务调度 状态保存 集群管理 有状态服务 服务调度 状态保存 带来的新挑战 服务调度 状态存储 集群管理 成员管理0 码力 | 42 页 | 4.77 MB | 1 年前3
基于go和flutter的实时通信/视频直播解决方案 段维伟02 客户端 03 服务端 04 开源社区 05 Q&A 06 背景 第一部分 即将讲述的内容 • WebRTC 实时通讯 • Flutter 跨平台UI 开发框架 • 基于Flutter UI 框架的WebRTC 插件 flutter-webrtc • Go 语言的WebRTC 协议栈 pion/webrtc • 基于pion/webrtc 的应用级服务框架 pion/ion (ios/android/c++) • 使用第三方堆栈实现兼容功能(Go) https://github.com/pion/webrtc 一对一视频原理 基本通讯流程 5 RTP/RTCP/媒体流 1 Offer 信令服务器 2 Offer 3 Answer 4 Answer SDP(Session Description Protocol) v=0 o=mozilla...THIS_IS_SDPARTA-82 的一致性,更新迭代(类似SDK需按平台维护) • 性能问题(全部使用html5) 客户端是否有 更好的选择? 为何选择 Flutter • 同样是 Google 发起的跨全平台高性能UI框架 • 基于 Skia 2D 渲染引擎 • 使用类似JS/TS的Dart 语言开发 • 支持代码编辑后热重载, Flutter 支持那些平台 iOS/Android/Web/Windows/Linux/macOS/Embedded0 码力 | 38 页 | 2.22 MB | 1 年前3
MySQL 8.0.17 调优指南(openEuler 20.09)调优分析思路如下: 1. 很多情况下压测流量并没有完全进入到服务端,在网络上可能就会出现由于各种 规格(带宽、最大连接数、新建连接数等)限制,导致压测结果达不到预期。 2. 接着看关键指标是否满足要求,如果不满足,需要确定是哪个地方有问题,一般 情况下,服务器端问题可能性比较大,也有可能是客户端问题(这种情况比较 小)。 3. 对于服务器端问题,需要定位的是硬件相关指标,例如CPU,Memory,Disk 存命 中率等。 5. 如果以上指标都正常,应用程序的算法、缓冲、缓存、同步或异步可能有问题, 需要具体深入的分析。 瓶颈点 说明 硬件/规格 一般指的是CPU、内存、磁盘I/O方面的问题,分为服务器硬件瓶 颈、网络瓶颈(对局域网可以不考虑)。 操作系统 一般指的是Windows、UNIX、Linux等操作系统。例如,在进行性 能测试,出现物理内存不足时,虚拟内存设置也不合理,虚拟内 存的交 硬件调优 2.1 BIOS配置 2.1 BIOS 配置 目的 对于不同的硬件设备,通过在BIOS中设置一些高级选项,可以有效提升服务器性能。 方法 步骤1 关闭SMMU。 说明 此优化项只在非虚拟化场景使用,在虚拟化场景,则开启SMMU。 1. 重启服务器过程中,单击Delete键进入BIOS,选择“Advanced > MISC Config”,单击Enter键进入。 2. 将“Support0 码力 | 11 页 | 223.31 KB | 1 年前3
Apache Pulsar,云原生时代的消息平台 - 翟佳
streamnative.io Apache Pulsar 要解决的问题 • 企业需求和数据规模 • 多租户 - 百万Topics - 低延时 - 持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 org/en/powered-by/ StreamNative 和 Pulsar Summit StreamNative 和 Pulsar Summit streamnative.io 社区资源 • 微信公众号: • ApachePulsar / StreamNative • B站:https://space.bilibili.com/391380821 • 邮件列表 • dev@pulsar.apache0 码力 | 39 页 | 12.71 MB | 6 月前0.03
JavaScript 正则表达式迷你书 老姚 - v1.1这三者中任意一个字符,该怎么做呢? 不能写成 [a-z],因为其表示小写字符中的任何一个字符。 可以写成如下的方式:[-az] 或 [az-] 或 [a\-z]。 即要么放在开头,要么放在结尾,要么转义。总之不会让引擎认为是范围表示法就行了。 1.2.2. 排除字符组 纵向模糊匹配,还有一种情形就是,某位字符可以是任何东西,但就不能是 "a"、"b"、"c"。 此时就是排除字符组(反义字符组)的概念。例如 [^abc],表示是一个除 其可视化形式是: JavaScript 正则表达式迷你书 3. 第三章 正则表达式括号的作用 | 第 27 页 对比这两个可视化图片,我们发现,与前者相比,后者多了分组编号,如 Group #1。 其实正则引擎也是这么做的,在匹配过程中,给每一个分组都开辟一个空间,用来存储每一个分组匹配到的 数据。 既然分组可以捕获数据,那么我们就可以使用它们。 3.2.1. 提取数据 比如提取出年、月、日,可以这么做: 点。 • 分支结构“试”的策略是:货比三家。这家不行,换一家吧,还不行,再换。 既然有回溯的过程,那么匹配效率肯定低一些。相对谁呢?相对那些 DFA 引擎, DFA 是“确定型有限自动 机”的简写。 而 JavaScript 的正则引擎是 NFA,NFA 是“非确定型有限自动机”的简写。 大部分语言中的正则都是 NFA,为啥它这么流行呢? 答:你别看我匹配慢,但是我编译快啊,而且我还有趣哦。0 码力 | 89 页 | 3.42 MB | 11 月前3
JavaScript 正则表达式迷你书 老姚 - v1.0这三者中任意一个字符,该怎么做呢? 不能写成 [a-z],因为其表示小写字符中的任何一个字符。 可以写成如下的方式:[-az] 或 [az-] 或 [a\-z]。 即要么放在开头,要么放在结尾,要么转义。总之不会让引擎认为是范围表示法就行了。 1.2.2. 排除字符组 纵向模糊匹配,还有一种情形就是,某位字符可以是任何东西,但就不能是 "a"、"b"、"c"。 此时就是排除字符组(反义字符组)的概念。例如 [^abc],表示是一个除 其可视化形式是: JavaScript 正则表达式迷你书 3. 第三章 正则表达式括号的作用 | 第 27 页 对比这两个可视化图片,我们发现,与前者相比,后者多了分组编号,如 Group #1。 其实正则引擎也是这么做的,在匹配过程中,给每一个分组都开辟一个空间,用来存储每一个分组匹配到的 数据。 既然分组可以捕获数据,那么我们就可以使用它们。 3.2.1. 提取数据 比如提取出年、月、日,可以这么做: 点。 • 分支结构“试”的策略是:货比三家。这家不行,换一家吧,还不行,再换。 既然有回溯的过程,那么匹配效率肯定低一些。相对谁呢?相对那些 DFA 引擎, DFA 是“确定型有限自动 机”的简写。 而 JavaScript 的正则引擎是 NFA,NFA 是“非确定型有限自动机”的简写。 大部分语言中的正则都是 NFA,为啥它这么流行呢? 答:你别看我匹配慢,但是我编译快啊,而且我还有趣哦。0 码力 | 89 页 | 3.42 MB | 11 月前3
共 17 条
- 1
- 2













