 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open0 码力 | 85 页 | 8.31 MB | 8 月前3 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open0 码力 | 85 页 | 8.31 MB | 8 月前3
 Ubuntu 桌面培训 2010基于这个协议,您可以自由: • 复制、发行、展览、表演、放映、广播或通过信息网络传播本作品 • 创作演绎作品 惟须遵守下列条件: • 署名。您必须按照作者或者许可人指定的方式对作品进行署名(但是不得以任何方式暗示它们支持您 或者您作品的使用)。 • 非商业性使用。您不得将本作品用于商业目的。 • 相同方式共享。如果您改变、转换本作品或者以本作品为基础进行创作,您只能采用与本协议相同的 许可协议发布基于本作品的演绎作品。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 目录 Lucid Lynx II.II 添加语言支持和更改默认语言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 II.III 创建一个用户账户和快速切换用户 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 IX Ubuntu 帮助和支持 435 IX.I 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 540 页 | 26.26 MB | 1 年前3 Ubuntu 桌面培训 2010基于这个协议,您可以自由: • 复制、发行、展览、表演、放映、广播或通过信息网络传播本作品 • 创作演绎作品 惟须遵守下列条件: • 署名。您必须按照作者或者许可人指定的方式对作品进行署名(但是不得以任何方式暗示它们支持您 或者您作品的使用)。 • 非商业性使用。您不得将本作品用于商业目的。 • 相同方式共享。如果您改变、转换本作品或者以本作品为基础进行创作,您只能采用与本协议相同的 许可协议发布基于本作品的演绎作品。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 目录 Lucid Lynx II.II 添加语言支持和更改默认语言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 II.III 创建一个用户账户和快速切换用户 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 IX Ubuntu 帮助和支持 435 IX.I 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 540 页 | 26.26 MB | 1 年前3
 谈谈MYSQL那点事互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事  MySQL MySQL 基本介绍 基本介绍  MySQL MySQL 优化方式 优化方式  MySQL MySQL 技巧分享 技巧分享  Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 少碎片、支持大文件、能够进行索引压缩 少碎片、支持大文件、能够进行索引压缩 • 二进制层次的文件可以移植 二进制层次的文件可以移植 (Linux (Linux   Windows) Windows) • 访问速度飞快,是所有 访问速度飞快,是所有 MySQL MySQL 文件引擎中速度最快的 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 lock ,性能稍差,更适合读取多的操作 ,性能稍差,更适合读取多的操作 InnoDB InnoDB 特点 特点 •使用 使用 Table Space Table Space 的方式来进行数据存储 的方式来进行数据存储 (ibdata1, ib_logfile0) (ibdata1, ib_logfile0) • 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 •0 码力 | 38 页 | 2.04 MB | 1 年前3 谈谈MYSQL那点事互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事  MySQL MySQL 基本介绍 基本介绍  MySQL MySQL 优化方式 优化方式  MySQL MySQL 技巧分享 技巧分享  Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 少碎片、支持大文件、能够进行索引压缩 少碎片、支持大文件、能够进行索引压缩 • 二进制层次的文件可以移植 二进制层次的文件可以移植 (Linux (Linux   Windows) Windows) • 访问速度飞快,是所有 访问速度飞快,是所有 MySQL MySQL 文件引擎中速度最快的 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 lock ,性能稍差,更适合读取多的操作 ,性能稍差,更适合读取多的操作 InnoDB InnoDB 特点 特点 •使用 使用 Table Space Table Space 的方式来进行数据存储 的方式来进行数据存储 (ibdata1, ib_logfile0) (ibdata1, ib_logfile0) • 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 •0 码力 | 38 页 | 2.04 MB | 1 年前3
 基于 KUBERNETES 的 容器器 + AI 平台构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 • 企业想要的 • 隔离性和安全性 K8s - 单『控制集群』, 多『⽤用户集群』 • 镜像仓库 - 单『默认仓 库』,多仓库集成 管理理集群和节点 • 技术概览 • cloud provider • custom resource • ansible 管理理镜像仓库 • Cargo (内部项⽬目)- ⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 企业典型的多租户模型 租户 Tenant User User group Namespace Deployment Registry project CI/CD workspace Pod … resources CPU quota MEM quota Storage0 码力 | 19 页 | 3.55 MB | 1 年前3 基于 KUBERNETES 的 容器器 + AI 平台构建集群与管理理资源 - 73s 视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 • 企业想要的 • 隔离性和安全性 K8s - 单『控制集群』, 多『⽤用户集群』 • 镜像仓库 - 单『默认仓 库』,多仓库集成 管理理集群和节点 • 技术概览 • cloud provider • custom resource • ansible 管理理镜像仓库 • Cargo (内部项⽬目)- ⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 企业典型的多租户模型 租户 Tenant User User group Namespace Deployment Registry project CI/CD workspace Pod … resources CPU quota MEM quota Storage0 码力 | 19 页 | 3.55 MB | 1 年前3
 基于go和flutter的实时通信/视频直播解决方案 段维伟漂亮的app,最好全部(mobile, web, desktop)平台都支持. • 最容易使用的后端技术 真实世界的需求点 用开源方案实现需求 WebRTC + Flutter + Go 技术简介 第二部分 WebRTC 是什么 01. • 由 Google 发起的基于浏览器通讯标准 • 基于收购来的 GIPS (6800万美金)的高质量实时音视频引 擎 • 支持主流浏览器主流移动设备 • 历时十年成为Web • 支持代码编辑后热重载, Flutter 支持那些平台 iOS/Android/Web/Windows/Linux/macOS/Embedded 使用flutter 开发app意味着什么? • 无需为每个平台独立维护代码 • 一次编码,多平台运行,效率最大化 • 多平台一致性体验 • 强大的社区资源 Flutter-WebRTC 插件 Flutter-WebRTC 支持那些平台 com/pion/ion • 基于pion/webrtc 开发 pion/ion-sfu • 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块0 码力 | 38 页 | 2.22 MB | 1 年前3 基于go和flutter的实时通信/视频直播解决方案 段维伟漂亮的app,最好全部(mobile, web, desktop)平台都支持. • 最容易使用的后端技术 真实世界的需求点 用开源方案实现需求 WebRTC + Flutter + Go 技术简介 第二部分 WebRTC 是什么 01. • 由 Google 发起的基于浏览器通讯标准 • 基于收购来的 GIPS (6800万美金)的高质量实时音视频引 擎 • 支持主流浏览器主流移动设备 • 历时十年成为Web • 支持代码编辑后热重载, Flutter 支持那些平台 iOS/Android/Web/Windows/Linux/macOS/Embedded 使用flutter 开发app意味着什么? • 无需为每个平台独立维护代码 • 一次编码,多平台运行,效率最大化 • 多平台一致性体验 • 强大的社区资源 Flutter-WebRTC 插件 Flutter-WebRTC 支持那些平台 com/pion/ion • 基于pion/webrtc 开发 pion/ion-sfu • 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块0 码力 | 38 页 | 2.22 MB | 1 年前3
 Kubernetes Operator 实践 - MySQL容器化Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 搜狗商业平台 技术体系广 服务多迭代快 搜狗产品矩阵 商业平台 信息流广告 搜索广告 品牌广告 代理商 广告主 技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 设计实践 4. 小结 MySQL 容器化目标 • 快速部署 MySQL 主从集群 • 支持 MySQL 集群高可用 • 支持 MySQL 集群弹性伸缩 • 支持 MySQL 5.5 & 5.7 Master Slave1 Slave2 MySQL 集群:1 主 2 从 MySQL 容器化系统架构 REST CLI Kubernetes Master API Server Scheduler mysqlclusters 1. 创建 CRD • Clientset • Informers • Listers • DeepCopy code-generator MySQL 容器化系统架构 REST CLI Kubernetes Master API Server Scheduler Controller Manager NodeM kubelet kube-proxy0 码力 | 42 页 | 4.77 MB | 1 年前3 Kubernetes Operator 实践 - MySQL容器化Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 搜狗商业平台 技术体系广 服务多迭代快 搜狗产品矩阵 商业平台 信息流广告 搜索广告 品牌广告 代理商 广告主 技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 设计实践 4. 小结 MySQL 容器化目标 • 快速部署 MySQL 主从集群 • 支持 MySQL 集群高可用 • 支持 MySQL 集群弹性伸缩 • 支持 MySQL 5.5 & 5.7 Master Slave1 Slave2 MySQL 集群:1 主 2 从 MySQL 容器化系统架构 REST CLI Kubernetes Master API Server Scheduler mysqlclusters 1. 创建 CRD • Clientset • Informers • Listers • DeepCopy code-generator MySQL 容器化系统架构 REST CLI Kubernetes Master API Server Scheduler Controller Manager NodeM kubelet kube-proxy0 码力 | 42 页 | 4.77 MB | 1 年前3
 清华大学 DeepSeek 从入门到精通用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来”0 码力 | 103 页 | 5.40 MB | 8 月前3 清华大学 DeepSeek 从入门到精通用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来”0 码力 | 103 页 | 5.40 MB | 8 月前3
 MySQL高可用 - 多种方案....................................................................................... 3 2.2 方案架构图 ................................................................................................. ....................................................................................... 9 3.2 方案架构图 ................................................................................................. ...................................................................................... 16 4.3 方案架构图 .................................................................................................0 码力 | 31 页 | 874.28 KB | 1 年前3 MySQL高可用 - 多种方案....................................................................................... 3 2.2 方案架构图 ................................................................................................. ....................................................................................... 9 3.2 方案架构图 ................................................................................................. ...................................................................................... 16 4.3 方案架构图 .................................................................................................0 码力 | 31 页 | 874.28 KB | 1 年前3
 Apache Pulsar,云原生时代的消息平台 - 翟佳
streamnative.io Apache Pulsar 要解决的问题 • 企业需求和数据规模 • 多租户 - 百万Topics - 低延时 - 持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ • ⾼性能 + 强⼀致性 • ⽀持统⼀的 Queue 和 Stream 的接⼝。 • 丰富的企业级特性 • 多租户隔离 — 百万Topics — 跨地域复制 — 鉴权认证 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar Pulsar 的⽣态和社区 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错0 码力 | 39 页 | 12.71 MB | 6 月前0.03 Apache Pulsar,云原生时代的消息平台 - 翟佳
streamnative.io Apache Pulsar 要解决的问题 • 企业需求和数据规模 • 多租户 - 百万Topics - 低延时 - 持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ • ⾼性能 + 强⼀致性 • ⽀持统⼀的 Queue 和 Stream 的接⼝。 • 丰富的企业级特性 • 多租户隔离 — 百万Topics — 跨地域复制 — 鉴权认证 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar Pulsar 的⽣态和社区 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错0 码力 | 39 页 | 12.71 MB | 6 月前0.03
 RocketMQ v3.2.4 开发指南...................................................................................... 16 7.1 单机支持 1 万以上持丽化队列 ....................................................................................... 息兇投递,如果消息完全在一个内存队列中,那举在投递前可以挄照优兇级排序,令优兇级高的兇投递。 由亍 RocketMQ 所有消息都是持丽化的,所以如果挄照优兇级来排序,开销会非常大,因此 RocketMQ 没有特 意支持消息优兇级,但是可以通过发通的方式实现类似功能,即单独配置一个优兇级高的队列,和一个普通优兇级 的队列, 将丌同优兇级収送到丌同队列即可。 对亍优兇级问题,可以归纳为 2 类 1) 只要 的负担,实现相对复杂。 (1). 淘宝 Notify 支持多种过滤方式,包含直接挄照消息类型过滤,灵活的诧法表达式过滤,几乎可以满足 最苛刻的过滤需求。 (2). 淘宝 RocketMQ 支持挄照简单的 Message Tag 过滤,也支持挄照 Message Header、body 迕行过滤。 (3). CORBA Notification 规范中也支持灵活的诧法表达式过滤。  Consumer0 码力 | 52 页 | 1.61 MB | 1 年前3 RocketMQ v3.2.4 开发指南...................................................................................... 16 7.1 单机支持 1 万以上持丽化队列 ....................................................................................... 息兇投递,如果消息完全在一个内存队列中,那举在投递前可以挄照优兇级排序,令优兇级高的兇投递。 由亍 RocketMQ 所有消息都是持丽化的,所以如果挄照优兇级来排序,开销会非常大,因此 RocketMQ 没有特 意支持消息优兇级,但是可以通过发通的方式实现类似功能,即单独配置一个优兇级高的队列,和一个普通优兇级 的队列, 将丌同优兇级収送到丌同队列即可。 对亍优兇级问题,可以归纳为 2 类 1) 只要 的负担,实现相对复杂。 (1). 淘宝 Notify 支持多种过滤方式,包含直接挄照消息类型过滤,灵活的诧法表达式过滤,几乎可以满足 最苛刻的过滤需求。 (2). 淘宝 RocketMQ 支持挄照简单的 Message Tag 过滤,也支持挄照 Message Header、body 迕行过滤。 (3). CORBA Notification 规范中也支持灵活的诧法表达式过滤。  Consumer0 码力 | 52 页 | 1.61 MB | 1 年前3
共 17 条
- 1
- 2













