 Ubuntu 桌面培训 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 VIII.VIII 在线媒体播放 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 8 目录 Lucid Lynx IX.III 在线文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 VIII.77选择在线视频的链接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4150 码力 | 540 页 | 26.26 MB | 1 年前3 Ubuntu 桌面培训 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 VIII.VIII 在线媒体播放 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 8 目录 Lucid Lynx IX.III 在线文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 VIII.77选择在线视频的链接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4150 码力 | 540 页 | 26.26 MB | 1 年前3
 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单选择版本:根据需求选择工具的四个版本,包括基础版、增强版、专业版(单图)、专业版(双图)。  文献导入:用户可从现有文献数据库中下载中英文数据后导入平台,或直接通过实时联网访问免费数据库 进行在线分析,操作简单便捷。  信息提取与分析:平台自动运用AI技术对导入的文献进行关键信息提取和深度梳理分析,用户无需进行复 杂操作,等待平台处理完成即可。  综述生成:根据智能分析结果,平台自动 推理能力:核心突破,专项升级  推理能力 • 强化学习驱动:DeepSeek R1-Zero 是首个完全基于强化学习(RL) 训练的推理模型,无需任何监督微调(SFT)步骤,打破传统模型依 赖大量标注数据的惯例。DeepSeek-R1 采用强化学习作为核心训练 方法,显著提升了模型的推理能力和语言表达的可读性。 • 推理能力专项提升:在除了利用强化学习模型结合跨领域训练提升模 型综合技能以外, 展 示 推 理 路 径 自 我 修 正 DeepSeek R1 的核心突破在于其通过强化学习驱动的推理能力。该 模型在训练过程中,通过强化学习技术,显著提升模型的推理能力, 使其在数学、编程和自然语言推理等任务上表现出色。 传统依赖: 大规模监督微调(SFT) 创新思路: 强化学习(RL)驱动  推理效率 • 长思维链支持:DeepSeek R1 支持长链推理,能够生成数万字的0 码力 | 85 页 | 8.31 MB | 8 月前3 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单选择版本:根据需求选择工具的四个版本,包括基础版、增强版、专业版(单图)、专业版(双图)。  文献导入:用户可从现有文献数据库中下载中英文数据后导入平台,或直接通过实时联网访问免费数据库 进行在线分析,操作简单便捷。  信息提取与分析:平台自动运用AI技术对导入的文献进行关键信息提取和深度梳理分析,用户无需进行复 杂操作,等待平台处理完成即可。  综述生成:根据智能分析结果,平台自动 推理能力:核心突破,专项升级  推理能力 • 强化学习驱动:DeepSeek R1-Zero 是首个完全基于强化学习(RL) 训练的推理模型,无需任何监督微调(SFT)步骤,打破传统模型依 赖大量标注数据的惯例。DeepSeek-R1 采用强化学习作为核心训练 方法,显著提升了模型的推理能力和语言表达的可读性。 • 推理能力专项提升:在除了利用强化学习模型结合跨领域训练提升模 型综合技能以外, 展 示 推 理 路 径 自 我 修 正 DeepSeek R1 的核心突破在于其通过强化学习驱动的推理能力。该 模型在训练过程中,通过强化学习技术,显著提升模型的推理能力, 使其在数学、编程和自然语言推理等任务上表现出色。 传统依赖: 大规模监督微调(SFT) 创新思路: 强化学习(RL)驱动  推理效率 • 长思维链支持:DeepSeek R1 支持长链推理,能够生成数万字的0 码力 | 85 页 | 8.31 MB | 8 月前3
 清华大学 DeepSeek 从入门到精通例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训 (1)输入概念: • 社交媒体:即时性、互动性、个性化、病毒传播 • 传统图书馆:知识储备、系统分类、安静学习、专业指导 (2)共同特征: • 信息存储和检索 • 用户群体链接 • 知识分享 (3)融合点: • 实时知识互动 • 知识深度社交网络 • 数字化图书馆员服务 • 个性化学习路径 输入空间定义 明确要融合的两个或多个概念领域 通用空间识别 找出输入空间之间的共同特征 选择性投射 选择性投射 从输入空间选择相关元素进行融合 涌现结构构建 在融合空间中创造新的、创新结构 知识转移技术(KTT):跨域智慧应用 �KTT的理论基础: KTT基于认知科学中的迁移学习理论和组织学习理论。 提出了以下关键步骤: �KTT实施步骤: 1. 定义问题:明确目标领域需要解决的问题或创新点 2. 寻找源域:搜索可能包含相关知识或方法的其他领域 3. 知识提取:从源域提取关键的知识、技能或方法0 码力 | 103 页 | 5.40 MB | 8 月前3 清华大学 DeepSeek 从入门到精通例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训 (1)输入概念: • 社交媒体:即时性、互动性、个性化、病毒传播 • 传统图书馆:知识储备、系统分类、安静学习、专业指导 (2)共同特征: • 信息存储和检索 • 用户群体链接 • 知识分享 (3)融合点: • 实时知识互动 • 知识深度社交网络 • 数字化图书馆员服务 • 个性化学习路径 输入空间定义 明确要融合的两个或多个概念领域 通用空间识别 找出输入空间之间的共同特征 选择性投射 选择性投射 从输入空间选择相关元素进行融合 涌现结构构建 在融合空间中创造新的、创新结构 知识转移技术(KTT):跨域智慧应用 �KTT的理论基础: KTT基于认知科学中的迁移学习理论和组织学习理论。 提出了以下关键步骤: �KTT实施步骤: 1. 定义问题:明确目标领域需要解决的问题或创新点 2. 寻找源域:搜索可能包含相关知识或方法的其他领域 3. 知识提取:从源域提取关键的知识、技能或方法0 码力 | 103 页 | 5.40 MB | 8 月前3
 基于go和flutter的实时通信/视频直播解决方案 段维伟协议栈 pion/webrtc • 基于pion/webrtc 的应用级服务框架 pion/ion • 5G 时代, 实时通讯应用爆发 • 疫情影响,全世界都在使用远程教育,远程办公 • 云游戏,机器人,VR,直播等 • 如何用最容易的方案实现实时通讯 • 漂亮的app,最好全部(mobile, web, desktop)平台都支持. • 最容易使用的后端技术 真实世界的需求点 用开源方案实现需求 实时通讯标准 • RTMP 直播协议的低延迟替代方案 WebRTC 可以做什么 02. 副标题 • 用实现网页音/视频通话 • 低延迟直播系统(在线课堂) • 多人视频会议系统 • 高质量SIP/VOIP系统 • 视频监控系统 • 机器学习,视觉计算等 如何使用它 01. 副标题 • 在Web中使用JS API • 基于google libwebrtc实现原生客户端开发 (ios/android/c++)0 码力 | 38 页 | 2.22 MB | 1 年前3 基于go和flutter的实时通信/视频直播解决方案 段维伟协议栈 pion/webrtc • 基于pion/webrtc 的应用级服务框架 pion/ion • 5G 时代, 实时通讯应用爆发 • 疫情影响,全世界都在使用远程教育,远程办公 • 云游戏,机器人,VR,直播等 • 如何用最容易的方案实现实时通讯 • 漂亮的app,最好全部(mobile, web, desktop)平台都支持. • 最容易使用的后端技术 真实世界的需求点 用开源方案实现需求 实时通讯标准 • RTMP 直播协议的低延迟替代方案 WebRTC 可以做什么 02. 副标题 • 用实现网页音/视频通话 • 低延迟直播系统(在线课堂) • 多人视频会议系统 • 高质量SIP/VOIP系统 • 视频监控系统 • 机器学习,视觉计算等 如何使用它 01. 副标题 • 在Web中使用JS API • 基于google libwebrtc实现原生客户端开发 (ios/android/c++)0 码力 | 38 页 | 2.22 MB | 1 年前3
 MySQL高可用 - 多种方案高可用方案呢,我觉得首先我们需要了解的自己公司的业务,了解在线系统中那些东西 会影响高可用,以及了解各个高可用方案比较适合哪些场景,通过这些比对应该不难找 出适合自己公司的高可用 mysql 方案。 经常有网友问 mysql 高可用如何实现,希望得到一些能实际使用的可验证的高可用 方案。所以花了些时间对 mysql 高可用的几种常用方式做一下总结,及写出详细的配置 方案,方便网友学习以及验证,希望对大家学习 mysql 高可用有所帮助。这也是本文档 这个方案适用于只有两台数据库服务器(后端有多个从服务器也是可以的, 只是要手工切换从服务器比较麻烦,后面会介绍的 MMM 能将从服务器自动切 换)并且还能实现数据库的读写分离的情况,这样 backup 机器也能用起来,提 高系统资源的利用率,减少 master 端的负载。应用中读数据库配置读 VIP,写数 据库配置写 VIP。这个方案也能够很方便的进行单台数据库的管理维护以及切换 工作。比如进行大表的0 码力 | 31 页 | 874.28 KB | 1 年前3 MySQL高可用 - 多种方案高可用方案呢,我觉得首先我们需要了解的自己公司的业务,了解在线系统中那些东西 会影响高可用,以及了解各个高可用方案比较适合哪些场景,通过这些比对应该不难找 出适合自己公司的高可用 mysql 方案。 经常有网友问 mysql 高可用如何实现,希望得到一些能实际使用的可验证的高可用 方案。所以花了些时间对 mysql 高可用的几种常用方式做一下总结,及写出详细的配置 方案,方便网友学习以及验证,希望对大家学习 mysql 高可用有所帮助。这也是本文档 这个方案适用于只有两台数据库服务器(后端有多个从服务器也是可以的, 只是要手工切换从服务器比较麻烦,后面会介绍的 MMM 能将从服务器自动切 换)并且还能实现数据库的读写分离的情况,这样 backup 机器也能用起来,提 高系统资源的利用率,减少 master 端的负载。应用中读数据库配置读 VIP,写数 据库配置写 VIP。这个方案也能够很方便的进行单台数据库的管理维护以及切换 工作。比如进行大表的0 码力 | 31 页 | 874.28 KB | 1 年前3
 RocketMQ v3.2.4 开发指南.......................................................................... 25 7.14 单个 JVM 迕程也能利用机器超大内存 .............................................................................................. Consumer Group 中的 Consumer 实例平均分摊消费消息。例如某个 Topic 有 9 条消息,其中一个 Consumer Group 有 3 个实例(可能是 3 个迕程,戒者 3 台机器),那举每个实例只消费其中的 3 条消息。 在 CORBA Notification 规范中,无此消费方式。 在 JMS 规范中,JMS point-to-point model 不乀类似,但是 宕机戒者重启)下,消息短暂的乱序,使用普通顺序方 式比较合适。  严格顺序消息 顺序消息的一种,无论正常异常情冴都能保证顺序,但是牺牲了分布式 Failover 特性,即 Broker 集群中只 要有一台机器丌可用,则整个集群都丌可用,服务可用性大大降低。 如果服务器部署为同步双写模式,此缺陷可通过备机自劢切换为主避免,丌过仍然会存在几分钟的服务丌 可用。(依赖同步双写,主备自劢切换,自劢切换功能目前迓未实现)0 码力 | 52 页 | 1.61 MB | 1 年前3 RocketMQ v3.2.4 开发指南.......................................................................... 25 7.14 单个 JVM 迕程也能利用机器超大内存 .............................................................................................. Consumer Group 中的 Consumer 实例平均分摊消费消息。例如某个 Topic 有 9 条消息,其中一个 Consumer Group 有 3 个实例(可能是 3 个迕程,戒者 3 台机器),那举每个实例只消费其中的 3 条消息。 在 CORBA Notification 规范中,无此消费方式。 在 JMS 规范中,JMS point-to-point model 不乀类似,但是 宕机戒者重启)下,消息短暂的乱序,使用普通顺序方 式比较合适。  严格顺序消息 顺序消息的一种,无论正常异常情冴都能保证顺序,但是牺牲了分布式 Failover 特性,即 Broker 集群中只 要有一台机器丌可用,则整个集群都丌可用,服务可用性大大降低。 如果服务器部署为同步双写模式,此缺陷可通过备机自劢切换为主避免,丌过仍然会存在几分钟的服务丌 可用。(依赖同步双写,主备自劢切换,自劢切换功能目前迓未实现)0 码力 | 52 页 | 1.61 MB | 1 年前3
 消息中间件RocketMQ原理解析 - 斩秋前言 此文档是从学习 rocketmq 源码过程中的笔记中整理出来的,由于时间及能力原因,理 解有误之处还请谅解,希望对大家学习使用 rocketmq 有所帮助。 Rocketmq 是阿里基于开源思想做的一款产品,代码托管于 github 上,要想学好用好 rocketmq broker 机器,在通过 broker 的主从复制机制拷贝到 broker 的 slave 上去 二:Producer 如何发送消息 Producer 轮询某 topic 下的所有队列的方式来实现发送方的负载均衡 1) Topic 下的所有队列如何理解: 比如 broker1, broker2, borker3 三台 broker 机器都配置了 Topic_A Map 消息中间件RocketMQ原理解析 - 斩秋前言 此文档是从学习 rocketmq 源码过程中的笔记中整理出来的,由于时间及能力原因,理 解有误之处还请谅解,希望对大家学习使用 rocketmq 有所帮助。 Rocketmq 是阿里基于开源思想做的一款产品,代码托管于 github 上,要想学好用好 rocketmq broker 机器,在通过 broker 的主从复制机制拷贝到 broker 的 slave 上去 二:Producer 如何发送消息 Producer 轮询某 topic 下的所有队列的方式来实现发送方的负载均衡 1) Topic 下的所有队列如何理解: 比如 broker1, broker2, borker3 三台 broker 机器都配置了 Topic_A Map- > 遍历 Map - >的 brokername, 获取 broker 的 master 机器地址,将 brokerName 的 Set - 发送到 broker 请求锁定这些队列。 在 broker 端锁定队列,其实就是在 broker 的 queue 中标记一下消费端,表示这个 0 码力 | 57 页 | 2.39 MB | 1 年前3
 强大的音视频处理工具: FFmpeg本书的各种源码、在线浏览地址、多种格式⽂件下载如下: Gitbook源码 crifan/media_process_ffmpeg: 强⼤的⾳视频处理⼯具:FFmpeg 如何使⽤此Gitbook源码去⽣成发布为电⼦书 详⻅:crifan/gitbook_template: demo how to use crifan gitbook template and demo 在线浏览 强⼤的⾳视频处理⼯具:FFmpeg sindresorhus/Gifski: ? Convert videos to high-quality GIFs on your Mac 使⽤ ffmpeg 实现 MP4 与 GIF 的互转 - 任平⽣的学习笔记 HowToBurnSubtitlesIntoVideo – FFmpeg FFmpeg Filters Documentation - subtitles FFmpeg Filters Documentation0 码力 | 73 页 | 11.57 MB | 1 年前3 强大的音视频处理工具: FFmpeg本书的各种源码、在线浏览地址、多种格式⽂件下载如下: Gitbook源码 crifan/media_process_ffmpeg: 强⼤的⾳视频处理⼯具:FFmpeg 如何使⽤此Gitbook源码去⽣成发布为电⼦书 详⻅:crifan/gitbook_template: demo how to use crifan gitbook template and demo 在线浏览 强⼤的⾳视频处理⼯具:FFmpeg sindresorhus/Gifski: ? Convert videos to high-quality GIFs on your Mac 使⽤ ffmpeg 实现 MP4 与 GIF 的互转 - 任平⽣的学习笔记 HowToBurnSubtitlesIntoVideo – FFmpeg FFmpeg Filters Documentation - subtitles FFmpeg Filters Documentation0 码力 | 73 页 | 11.57 MB | 1 年前3
 GPU Resource Management On JDOSGPU Resource Management On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务0 码力 | 11 页 | 13.40 MB | 1 年前3 GPU Resource Management On JDOSGPU Resource Management On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务0 码力 | 11 页 | 13.40 MB | 1 年前3
 基于 KUBERNETES 的 容器器 + AI 平台视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 • 企业想要的 • 隔离性和安全性 • 容错性与混合云0 码力 | 19 页 | 3.55 MB | 1 年前3 基于 KUBERNETES 的 容器器 + AI 平台视频演示 多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 • 企业想要的 • 隔离性和安全性 • 容错性与混合云0 码力 | 19 页 | 3.55 MB | 1 年前3
共 16 条
- 1
- 2













