 谈谈MYSQL那点事Windows) • 访问速度飞快,是所有 访问速度飞快,是所有 MySQL MySQL 文件引擎中速度最快的 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 事务、外键约束等 • Table level lock Table level lock ,性能稍差,更适合读取多的操作 ,性能稍差,更适合读取多的操作 InnoDB InnoDB 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 • Rows level lock , Rows level lock , 读写性能都非常优秀 读写性能都非常优秀 • 能够承载大数据量的存储和访问 能够承载大数据量的存储和访问 • 拥有自己独立的缓冲池,能够缓存数据和索引 拥有自己独立的缓冲池,能够缓存数据和索引 MySQL 架构设计—应用架构 强一致性 对读 对读一致性的权衡,如果是对读写实时性要求非常高的话, 就将读写都放在 M1 上面, M2 只是作为 standby 。 比如,订单处理流程,那么对读需要强一致性,实时写实 时读,类似种涉及交易的或者动态实时报表统计的都要采 用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品0 码力 | 38 页 | 2.04 MB | 1 年前3 谈谈MYSQL那点事Windows) • 访问速度飞快,是所有 访问速度飞快,是所有 MySQL MySQL 文件引擎中速度最快的 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 事务、外键约束等 • Table level lock Table level lock ,性能稍差,更适合读取多的操作 ,性能稍差,更适合读取多的操作 InnoDB InnoDB 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 • Rows level lock , Rows level lock , 读写性能都非常优秀 读写性能都非常优秀 • 能够承载大数据量的存储和访问 能够承载大数据量的存储和访问 • 拥有自己独立的缓冲池,能够缓存数据和索引 拥有自己独立的缓冲池,能够缓存数据和索引 MySQL 架构设计—应用架构 强一致性 对读 对读一致性的权衡,如果是对读写实时性要求非常高的话, 就将读写都放在 M1 上面, M2 只是作为 standby 。 比如,订单处理流程,那么对读需要强一致性,实时写实 时读,类似种涉及交易的或者动态实时报表统计的都要采 用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品0 码力 | 38 页 | 2.04 MB | 1 年前3
 RocketMQ v3.2.4 开发指南..................................................................................... 8 4.13 分布式事务 .................................................................................................. .........................................................................................22 7.7 事务消息 ................................................................................................ (4). 消息堆积后,访问堆积在磁盘的消息时,吞吏量有多大? 4.13 分布式事务 已知的几个分布式事务规范,如 XA,JTA 等。其中 XA 规范被各大数据库厂商广泛支持,如 Oracle,Mysql 等。 其中 XA 的 TM 实现佼佼者如 Oracle Tuxedo,在金融、电信等领域被广泛应用。 分布式事务涉及到两阶段提交问题,在数据存储方面的方面必然需要 KV 存储的支持,因为第二阶段的提交回0 码力 | 52 页 | 1.61 MB | 1 年前3 RocketMQ v3.2.4 开发指南..................................................................................... 8 4.13 分布式事务 .................................................................................................. .........................................................................................22 7.7 事务消息 ................................................................................................ (4). 消息堆积后,访问堆积在磁盘的消息时,吞吏量有多大? 4.13 分布式事务 已知的几个分布式事务规范,如 XA,JTA 等。其中 XA 规范被各大数据库厂商广泛支持,如 Oracle,Mysql 等。 其中 XA 的 TM 实现佼佼者如 Oracle Tuxedo,在金融、电信等领域被广泛应用。 分布式事务涉及到两阶段提交问题,在数据存储方面的方面必然需要 KV 存储的支持,因为第二阶段的提交回0 码力 | 52 页 | 1.61 MB | 1 年前3
 消息中间件RocketMQ原理解析 - 斩秋中去,即不处理, 所以不会被消息 更新 transaction stable table: 如果是 prepared 消息记,通过 TransactionStateService 服 务将消息加到存储事务状态的表格 tranStateTable 的文件中;如果是 commitType 和 rollbackType 消息, 修改事物状态表格 tranStateTable 中的消息状态。 记 录 Transaction TSStoreUnitSize 2.2.4 事物回查 定时回查线程会定时扫描(默认每分钟)每个存储事务状态的表格文件, 遍历存储事 务状态的表格记录 如果是已经提交或者回滚的消息调过过, 如果是 prepared 状态的如果消息小于事务回查至少间隔时间(默认是一分钟)跳出终 止遍历 调 transactionCheckExecuter.gotocheck0 码力 | 57 页 | 2.39 MB | 1 年前3 消息中间件RocketMQ原理解析 - 斩秋中去,即不处理, 所以不会被消息 更新 transaction stable table: 如果是 prepared 消息记,通过 TransactionStateService 服 务将消息加到存储事务状态的表格 tranStateTable 的文件中;如果是 commitType 和 rollbackType 消息, 修改事物状态表格 tranStateTable 中的消息状态。 记 录 Transaction TSStoreUnitSize 2.2.4 事物回查 定时回查线程会定时扫描(默认每分钟)每个存储事务状态的表格文件, 遍历存储事 务状态的表格记录 如果是已经提交或者回滚的消息调过过, 如果是 prepared 状态的如果消息小于事务回查至少间隔时间(默认是一分钟)跳出终 止遍历 调 transactionCheckExecuter.gotocheck0 码力 | 57 页 | 2.39 MB | 1 年前3
 清华大学 DeepSeek 从入门到精通设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 + 格式 元素 长度元素 + 风格元素 通过清晰的任务指令和预定义的结构提高执行效率,同时确保输出符合特定的 格式和风格要求 提升输出一致性 风格元素 + 知识域元素 + 约束条 件元素 格式元素 + 质量控制元素 通过统一的风格和专业领域知识确保输出的一致性,同时使用约束条件和质量 控制维持标准 增强交互体验 迭代指令元素 + 输出验证元素 + 质量控制元素 任务指令元素 + 背景元素 1. 定位过于宽泛,缺乏针对性 2. 过度模仿竞争对手,失去独特性 3. 忽视市场变化,定位僵化 4. 与品牌实际能力不匹配,难以兑现承诺 应用示例 目标市场的精准描述 品牌个性和形象的一致性 竞争对手的分析和差异化策略 与目标受众的情感连接点 为[品牌名称]创建一个清晰而独特的品牌定位声明,遵循以下指南: (1)核心定位: 用一句简洁有力的话概括品牌的核心定位。确保这句话能清晰传达品牌的0 码力 | 103 页 | 5.40 MB | 8 月前3 清华大学 DeepSeek 从入门到精通设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 + 格式 元素 长度元素 + 风格元素 通过清晰的任务指令和预定义的结构提高执行效率,同时确保输出符合特定的 格式和风格要求 提升输出一致性 风格元素 + 知识域元素 + 约束条 件元素 格式元素 + 质量控制元素 通过统一的风格和专业领域知识确保输出的一致性,同时使用约束条件和质量 控制维持标准 增强交互体验 迭代指令元素 + 输出验证元素 + 质量控制元素 任务指令元素 + 背景元素 1. 定位过于宽泛,缺乏针对性 2. 过度模仿竞争对手,失去独特性 3. 忽视市场变化,定位僵化 4. 与品牌实际能力不匹配,难以兑现承诺 应用示例 目标市场的精准描述 品牌个性和形象的一致性 竞争对手的分析和差异化策略 与目标受众的情感连接点 为[品牌名称]创建一个清晰而独特的品牌定位声明,遵循以下指南: (1)核心定位: 用一句简洁有力的话概括品牌的核心定位。确保这句话能清晰传达品牌的0 码力 | 103 页 | 5.40 MB | 8 月前3
 基于go和flutter的实时通信/视频直播解决方案 段维伟Windows 使用libwebrtc.dll + C++ 实际开发中会遇到的困难 • 下载和编译Google WebRTC框架(防火墙,编译环境) • 原生SDK开发(每平台人力投入) • UI 的一致性,更新迭代(类似SDK需按平台维护) • 性能问题(全部使用html5) 客户端是否有 更好的选择? 为何选择 Flutter • 同样是 Google 发起的跨全平台高性能UI框架 • 基于 iOS/Android/Web/Windows/Linux/macOS/Embedded 使用flutter 开发app意味着什么? • 无需为每个平台独立维护代码 • 一次编码,多平台运行,效率最大化 • 多平台一致性体验 • 强大的社区资源 Flutter-WebRTC 插件 Flutter-WebRTC 支持那些平台 实现一对一视频通话服务 (基于 Go 开发) 源码: https://github0 码力 | 38 页 | 2.22 MB | 1 年前3 基于go和flutter的实时通信/视频直播解决方案 段维伟Windows 使用libwebrtc.dll + C++ 实际开发中会遇到的困难 • 下载和编译Google WebRTC框架(防火墙,编译环境) • 原生SDK开发(每平台人力投入) • UI 的一致性,更新迭代(类似SDK需按平台维护) • 性能问题(全部使用html5) 客户端是否有 更好的选择? 为何选择 Flutter • 同样是 Google 发起的跨全平台高性能UI框架 • 基于 iOS/Android/Web/Windows/Linux/macOS/Embedded 使用flutter 开发app意味着什么? • 无需为每个平台独立维护代码 • 一次编码,多平台运行,效率最大化 • 多平台一致性体验 • 强大的社区资源 Flutter-WebRTC 插件 Flutter-WebRTC 支持那些平台 实现一对一视频通话服务 (基于 Go 开发) 源码: https://github0 码力 | 38 页 | 2.22 MB | 1 年前3
 MySQL高可用 - 多种方案Lvs+keepalived 作为目前比较流行的高可用解决方案,lvs 提供负载均衡, keepalived 作为故障转移,提高系统的可用性。但是一般的 mysql 高可用为了实现 mysql 数据的一致性,一般都是采用单点写入,本方案采用 keepalived 中的 sorry_server 来实现写入数据库为单点的需求。本方案实现的功能是当网络有问题、 mysql 有问题、服务器宕机、keepalived Lvs+keepalived 作为目前比较流行的高可用解决方案,lvs 提供负载均衡, keepalived 作为故障转移,提高系统的可用性。但是一般的 mysql 高可用为了实现 mysql 数据的一致性,一般都是采用单点写入,本方案采用 keepalived 中的 sorry_server 来实现写入数据库为单点的需求,读负载均衡通过 lvs 实现,读能自由 的实现负载均衡和故障切换。本方案实现的功能是当网络有问题、mysql0 码力 | 31 页 | 874.28 KB | 1 年前3 MySQL高可用 - 多种方案Lvs+keepalived 作为目前比较流行的高可用解决方案,lvs 提供负载均衡, keepalived 作为故障转移,提高系统的可用性。但是一般的 mysql 高可用为了实现 mysql 数据的一致性,一般都是采用单点写入,本方案采用 keepalived 中的 sorry_server 来实现写入数据库为单点的需求。本方案实现的功能是当网络有问题、 mysql 有问题、服务器宕机、keepalived Lvs+keepalived 作为目前比较流行的高可用解决方案,lvs 提供负载均衡, keepalived 作为故障转移,提高系统的可用性。但是一般的 mysql 高可用为了实现 mysql 数据的一致性,一般都是采用单点写入,本方案采用 keepalived 中的 sorry_server 来实现写入数据库为单点的需求,读负载均衡通过 lvs 实现,读能自由 的实现负载均衡和故障切换。本方案实现的功能是当网络有问题、mysql0 码力 | 31 页 | 874.28 KB | 1 年前3
共 6 条
- 1













