积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)数据库(4)MySQL(4)综合其他(2)人工智能(2)Kubernetes(2)RocketMQ(2)前端开发(1)系统运维(1)Linux(1)

语言

全部中文(简体)(13)

格式

全部PDF文档 PDF(11)PPT文档 PPT(2)
 
本次搜索耗时 0.056 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 数据库
  • MySQL
  • 综合其他
  • 人工智能
  • Kubernetes
  • RocketMQ
  • 前端开发
  • 系统运维
  • Linux
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    o3mini 暂不支持附件上传,响应速度 快,能够快速读取粘贴数据, 输出结果格式工整、简洁。 DeepSeek R1 能够详细全面地提取文件中的 数据,并整理成可视化数据表 格,逻辑性强、指标清晰。 所上传的“2025春运数据(1月14-2月8日).txt”包含了从2025年1月14日至2025年2月8日每天各种交通方式的春运客运 量信息,请从中读取每一天的信息,并整理成一张表格,要求包括以下几项信息:1 Claude 3.5 sonnet 很好地完成了数据读取及提取 任务,没有漏数据指标,数据 逻辑性很好 Kimi k1.5 能够快速读取文件数据,并 整理成可视化数据表格,但 填入数据有所缺失。  DeepSeek R1与Claude 3.5 sonnet均能很好的完成文件数据读取任务,生成的表格逻辑性强、数据指标清晰,Claude 3.5 sonnet一 次性完成表格生成后支持直接复制和表格文件下载。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 数据分析 Open AI o3mini 响应速度快,高效输出数据分析 结果,分析各因素对关键指标生 存率的影响,语言表达自然,重 点突出结合历史背景对数据规律 进行验证,但没有察觉数据异常。 DeepSeek R1 详细展示长思维链,精准提取关键指 标“幸存率”,分析多个因素特征对
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    七“特” AIGC评测:2个国家级项目+1套自动化测评系统 AIGC评测 指标体系 共计26个细分指标 两项国家级项目: • 2023国家自然科学基金青年项目“面向人工智能生成内 容的风险识别与治理策略研究” • 2023国家资助博士后研究人员计划B档“AIGC意识形态 安全评估” 计特征、行为习惯、价值观和媒 体使用偏好。为每个群体设定一个吸引人的昵称。 (3)传播目标(600字内): 设定3个SMART目标,涵盖品牌知名度、参与度和转化率。每个目标都应有具体的 数字指标和时间框架。 (4)核心信息(500字内): 提炼1个总体信息和3个支持性信息点。这些信息应与品牌调性一致,并能引起目标 受众的共鸣。 (5)全渠道矩阵(1500字内): 设计一个包含至少7个 (9)时间线(1000字内): 绘制一个为期[具体时间]的传播时间表,包括预热、启动、高潮和持续阶段。标注 关键时间节点和相应的传播重点。 (10)效果评估(600字内): 设定5—7个关键绩效指标(KPI),涵盖曝光、参与、转化和品牌健康度等方面。 说明数据来源和评估频率。 (11)危机预案(500字内): 列出2—3个可能的传播风险,并为每个风险提供简要的应对策略。 预算分配建议: 按
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 MySQL 8.0.17 调优指南(openEuler 20.09)

    性能优化首先要较为精准的定位问题,分析系统性能瓶颈,然后根据其性能指标以及 所处层级选择优化的方式方法。 下面介绍MySQL数据库具体的调优思路和分析过程,如图1所示。 调优分析思路如下: 1. 很多情况下压测流量并没有完全进入到服务端,在网络上可能就会出现由于各种 规格(带宽、最大连接数、新建连接数等)限制,导致压测结果达不到预期。 2. 接着看关键指标是否满足要求,如果不满足,需要确定是哪个地方有问题,一般 能是客户端问题(这种情况比较 小)。 3. 对于服务器端问题,需要定位的是硬件相关指标,例如CPU,Memory,Disk I/O,Network I/O,如果是某个硬件指标有问题,需要深入的进行分析。 4. 如果硬件指标都没有问题,需要查看数据库相关指标,例如:等待事件、内存命 中率等。 5. 如果以上指标都正常,应用程序的算法、缓冲、缓存、同步或异步可能有问题, 需要具体深入的分析。 瓶颈点
    0 码力 | 11 页 | 223.31 KB | 1 年前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    commonmq v1.0 = Notify + RocketMQ + B2B 个性化需求 为 B2B 应用提供消息服务 3 与业术语  Producer 消息生产者,负责产生消息,一般由业务系统负责产生消息。  Consumer 消息消费者,负责消费消息,一般是后台系统负责异步消费。  Push Consumer Consumer 的一种,应用通常吐 Consumer 普通顺序消息 顺序消息的一种,正常情冴下可以保证完全的顺序消息,但是一旦収生通信异常,Broker 重启,由亍队列 总数収生发化,哈希叏模后定位的队列会发化,产生短暂的消息顺序丌一致。 如果业务能容忍在集群异常情冴(如某个 Broker 宕机戒者重启)下,消息短暂的乱序,使用普通顺序方 式比较合适。  严格顺序消息 顺序消息的一种,无论正常异常情冴都能保证顺序,但是牺牲了分布式 绝大部分的优兇级问题,但是对业务的优兇级精确性做了妥协。 2) 严格的优兇级,优兇级用整数表示,例如 0 ~ 65535,返种优兇级问题一般使用丌同 topic 解决就非常丌合 项目开源主页:https://github.com/alibaba/RocketMQ 5 适。如果要让 MQ 解决此问题,会对 MQ 的性能造成非常大的影响。返里要确保一点,业务上是否确实需 要返种严格的
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    比如购买流程(1)下单(2)支付(3)支付成功,这三个消息需要根据 特定规则将这个三个消息按顺序发送到一个 queue 如何实现把顺序消息发送到同一个 queue: 一般消息是通过轮询所有队列发送的,顺序消息可以根据业务比如说订单号 orderId 相同的消息发送到同一个队列, 或者同一用户 userId 发送到同一队列等等 messageQueueList [orderId%messageQueueList LocalTransactionExecuter , 处 理 本 地 事 物 逻 辑 返 回 处 理 的 事 物 状 态 LocalTransactionState 3) 二阶段,处理完本地事物中业务得到事物状态, 根据 offset 查找到 commitLog 中 的 prepared 消息,设置消息状态 commitType 或者 rollbackType , 让后将信息添加到 commitLog consumer 通过长轮询拉取消息后回调 MessageListener 接口实现完成消费, 应用系统只要 MessageListener 完成业务逻辑即可 2. Pull 方式:完全由业务系统去控制,定时拉取消息,指定队列消费等等, 当然这里需要 业务系统去根据自己的业务需求去实现 下面介绍默认以 push 方式为主, 因为绝大多数是由 push 消费方式来使用 rocketmq 的。
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
  • pdf文档 2022 Apache Ozone 的最近进展和实践分享

    HIVE/IMPALA/SPARK KAFKA / FLINK 计算 OTHER WORKLOADS OTHER WORKLOADS X • 可⽤于承载实时和批处理的业务 • 扩展性提升 • ⽆需改变或改造业务应⽤代码 • 降低控制平⾯的节点数和服务依赖 业务价值 • 降低⼤规模集群的运维难度 • 可通过HDFS API和Distcp进⾏快速迁移 • 降低系统恢复时间 • 尽可能的减少NN Apache Ozone – 使⽤场景 #2 • 可以快速的对接已适配S3 接⼝的应⽤ • 减少数据在多个平台间的迁移 • 使⽤单⼀的API协议来应对混合云架构 业务价值 • 集约化的⼀套存储来⾯向不同的业务负载 • 更易于运维的控制⾯ • 只需要⼀个运维团队⽽不是多个 运维价值 OZONE STORAGE AI/ML HIVE/IMPALA/ SPARK KAFKA
    0 码力 | 35 页 | 2.57 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品 业务实时性要求不是很高,完全可以采用这种弱一致性的设 计架构模式。 中间一致性 如果既不是很强的一致性又不是很弱的一致性,那 么我们就采取中间的策略,就是在同机房再部署一个 S1(R) 尽量不用触发器,特别是在大数据表上 应用优化 应用优化 编写高效的 编写高效的 SQL SQL (三) (三)  更新触发器如果不是所有情况下都需要触发,应根据业务需要加 更新触发器如果不是所有情况下都需要触发,应根据业务需要加 上必要判断条件 上必要判断条件  使用 使用 union all union all 操作代替 操作代替
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • pdf文档 基于go和flutter的实时通信/视频直播解决方案 段维伟

    分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块 • SFU 节点 (用于转发webrtc 流,与biz模块配合创建视频会议系 统) •
    0 码力 | 38 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Kubernetes Operator 实践 - MySQL容器化

    技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx (Load Balancer) Kafka Zookeeper etcd AppEngine(Resin/Tomcat…)
    0 码力 | 42 页 | 4.77 MB | 1 年前
    3
  • pdf文档 MySQL高可用 - 多种方案

    高可用一直是 mysql 业界不断讨论的热点问题,其中涉及的东西比较多,可 供选择的方案也相当多,面对这么多的方案,我们应该如何选择适合自己公司的 mysql 高可用方案呢,我觉得首先我们需要了解的自己公司的业务,了解在线系统中那些东西 会影响高可用,以及了解各个高可用方案比较适合哪些场景,通过这些比对应该不难找 出适合自己公司的高可用 mysql 方案。 经常有网友问 mysql 高可用如何实现,希望得到一些能实际使用的可验证的高可用 立即接管,其他的从服务器能自动切换,不用人工干预。 缺点:至少三个节点,对主机的数量有要求,需要实现读写分离,对程序来说是个 挑战。 6.3 方案架构图 6.4 适用场景 MMM 的适用场景为数据库访问量大,业务增长快,并且能实现读写分离的场景。 6.5 方案实战 6.5.1 实战环境介绍 实战环境服务器列表: 服务器 主机名 ip 地址 Serverid 系统 Mysql Monitor
    0 码力 | 31 页 | 874.28 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研清华华大大学入门精通MySQL8.017调优指南openEuler20.09RocketMQ开发消息中间中间件消息中间件原理解析ApacheOzone最近进展实践分享gocngoflutterrtcKubernetesOperator高可用
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩