积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(20)C++(15)Rust(4)系统运维(2)DevOps(2)数据库(1)Go(1)MySQL(1)

语言

全部中文(简体)(22)中文(简体)(1)

格式

全部PPT文档 PPT(23)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 23 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • Go
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 13 C++ STL 容器全解之 vector

    shrink_to_fit 只是提前释放而 已。 迭代器入门 迭代器模式 • 如果要把右边这个打印的操作封装起来, 该怎么做? 迭代器模式 • 如果要把右边这个打印的操作封装起来, 该怎么做? • 可以用一个函数来封装打印操作: • print(vector const &a); 迭代器模式 • 如果要把右边这个打印的操作封装起来, 该怎么做? • 可以用一个函数来封装打印操作: print(vector const &a); • 但是这样的缺点是他只能打印 vector 类 型,没法打印 string 类型。要支持 string 只能再写一遍一样的 print 函数。 迭代器模式 • 注意到 vector 和 string 的底层都是连续 的稠密数组,他们都有 data() 和 size() 函数。 • 因此可改用首地址指针和数组长度做参数 : • print(char 况下,只用最简单的接口(首地址指针) 就完成了遍历和打印的操作。 迭代器模式 • 使用指针和长度做接口的好处是,可以通 过给指针加减运算,选择其中一部分连续 的元素来打印,而不一定全部打印出来。 • 比如这里我们选择打印前三个元素(去掉 了最后一个元素,但不必用 pop_back 修 改数组,只要传参数的时候修改一下长度 部分即可)。 迭代器模式 • 使用指针和长度做接口的好处是,可以通 过给指针加减运算,选择其中一部分连续
    0 码力 | 90 页 | 4.93 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    (会安装到 /opt/openvdb-8.0/lib/libopenvdb.so ) • cmake -B build -DCMAKE_BUILD_TYPE=Release • ↑ 设置构建模式为发布模式(开启全部优化) • cmake -B build ← 第二次配置时没有 -D 参数,但是之前的 -D 设置的变量都会被保留 • (此时缓存里仍有你之前定义的 CMAKE_BUILD_TYPE 目录下 。 第 2 章:项目配置变量 CMAKE_BUILD_TYPE 构建的类型,调试模式还是发布模式 • CMAKE_BUILD_TYPE 是 CMake 中一个特殊的变量,用于控制构建类型,他的值可以 是: • Debug 调试模式,完全不优化,生成调试信息,方便调试程序 • Release 发布模式,优化程度最高,性能最佳,但是编译比 Debug 慢 • MinSizeRel 最小体积发布,生成的文件比 • 默认情况下 CMAKE_BUILD_TYPE 为空字符串,这时相当于 Debug 。 各种构建模式在编译器选项上的区别 • 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方面,由于代码优化后不与源代码一致,此模式下 一般会丢失大量的调试信息。 1. Debug: `-O0 -g` 2. Release: `-O3
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    现有框架无法完美适配移动端(一) Core Thread Thread Worker Worker task task Local queue Local queue Tokio 采用了如右图这种 GMP 模式: • 一核可以绑定多线程,每个线程拥有一个 Worker ,每个 Worker 拥有一个任务队列 • 但线程拥有相同优先级 • Worker 只持有一个本地 FIFO 队列 移动端诉求:优先级 spawn_blocking 调度模式 spawn 调度模式 Thread Worker task Local queue Thread Thread task Global queue task New task Global queue New task take & run take & run Worker take & run Steal & run 两种接口拥有两套割裂的调度模式和线程池 库中 thread scope 的思想异步化  在同步环境阻塞等待子异步任务完成,在异步 环境异步等待子异步任务完成  优先级继承:子任务默认继承父任务优先级, 也可使用 detached 模式指定其他优先级  任务取消:取消父任务,也将取消所有子任务 性能 Performance 耗时 ( 单位 us) Tokio ylong 耗时比 / tokio IO 低并发,低传输
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 09 CUDA C++ 流体仿真实战

    surf3Dread 和 surf3Dwrite 来读写 表面对象中的元素, x,y,z 参数指定要访问元素的坐标 ,要注意 x 必须乘以 sizeof( 元素类型 ) ,否则出错。 • 这里用了访问者模式( Accessor , GPU 编程常用)。 原来的 CudaSurface 管理资源,禁止拷贝。然后单独 弄一个访问者类 CudaSurfaceAccessor ,不管理资源 ,仅仅是指向资源的一个弱引用,可以随意拷贝。并把 cudaAddressModeBorder :超出范围就用零代替 • 示意: 00 | ABCDE | 00 • cudaAddressModeWrap :重叠模式(循环) • 示意: DE | ABCDE | AB • cudaAddressModeMirror :镜像模式 • 示意: BA | ABCDE | ED CUDA 纹理对象:封装 • 其中 cudaTextureFilterMode 表示采样的坐标不是整数 边界条件:添加判断边界的版本 边界条件:仅在第一层额外判断边界条件 进一步改进 VDB 导出:支持导出多个网格,并指定名称 进一步改进 VDB 导出: P-IMPL 模式 进一步改进 VDB 导出: F-IMPL 模式 Blender 渲染结果 改进 改进边界条件:外部边界流出而不是反弹,内部边界可以流出速度 Blender 中调整一下材质 Blender 中调整一下材质 改进对流:让烟雾随时间逐渐褪色
    0 码力 | 58 页 | 14.90 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践

    IObject 里的成员,而不会释放 CatObject 里的成员 string m_catFood 。所以 这里的解构函数也是多态的,他根据类型的不同 调用不同派生类的解构函数。 多态用于设计模式之“模板模式” • 这样之后如果有一个任务是要基于 eatFood 做文章,比如要重复 eatFood 两遍。 • 就可以封装到一个函数 eatTwice 里,这个函数只需接受他们共同的基类 IObject 并且即使多个线程同时调用了 func ,这个变量的 初始化依然保证是原子的( C++11 起)。 • 这就是函数静态初始化 (func-static-init) 大法。 函数静态初始化可用于“懒汉单例模式” • 如右图。 • getMyClassInstance() 会在第一次调用时创 建 MyClass 对象,并返回指向他的引用。 • 根据 C++ 函数静态变量初始化的规则,之后 的调用不会再重复创建。 利用这个发现,我们意识到可以把 functab 用所谓的“懒汉单例模式”包装成一 个 getFunctab() 函数,里面的 inst 变量 会在第一次进入的时候初始化。因为第一 次调用是在 defCat 中,从而保证是在所 有 emplace 之前就初始化过,因此不会 有 segfault 的问题了! 函数表结合工厂模式 Zeno 中定义节点的宏 • 在 Zeno 中每个节点还额外有一个
    0 码力 | 54 页 | 3.94 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    • 但是却没有出错,这是因为模板没有被调用,所以不会被实际编译! • 而只有当 main 调用了这个函数,才会被编译,才会报错! • 用一个假模板实现延迟编译的技术,可以加快编译的速度,用于代理模式等。 模板函数:一个例子 • 比如,要打印任意一个 vector : 模板函数:配合运算符重载 • 实现用 std::cout << a 打印任意 vector : 模板函数:大家学废了吗! const & ) • 同理, auto const & 可以定义常引用: 自动类型推导:函数返回引用 • 当然,函数的返回类型也可以是 auto & 或者 auto const & 。比如懒汉单例模式: 理解右值:即将消失的,不长时间存在于内存中的值 • 引用又称为左值( l-value )。左值通常对应着一个长时间存在于内 存中的变量。 • 除了左值之外,还有右值( r-value )。右值通常是一个表达式,代 decltype(auto) p = func(); • 会自动推导为 func() 的返回类型。 • 和下面这种方式等价: • decltype(func()) p = func(); • 在代理模式中,用于完美转发函数返回值。比如: • decltype(auto) at(size_t i) const { • return m_internal_class.at(i); } using
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    面向人群:图形学、 CFD 仿真、深度学习编程人 员 第 0 章:稀疏矩阵 稠密数组存储矩阵 用 foreach 包装一下枚举的过程 改用 map 来存储 分离 read/write/create 三种访问模式 foreach 直接给出当前坐标指向的值 改用 unordered_map 来存储 unordered_map 手动 read(i, j) 也一样速度 索性把坐标和值打包成 tuple ,存储在 能计算而言 tbb::spin_mutex 更高效。其实 sizeof(std::mutex) = 40 字节,而 sizeof(tbb::spin_mutex) = 1 字节…… 小彭老师解决:访问者模式 把写入过的块地址缓存起来,可以避免多次访问全局表的开销。缓存在访问 者 (accessor) 的成员 map 里。访问者对象被我用 OpenMP 标记为 firstprivate ,意味着这个 map 指针数组的话,本来就是平坦的二维数组,直接 用 omp parallel for collapse(2) 遍历二维区间。 把 func 捕获为 firstprivate ,从而支持用 lambda 捕获的访问者模式。 实现访问者模式 • 额,总之就是每一层都有一个缓存。 第 5 章:量化整型 使用 int :每个占据 4 字节 • 记得我第七课说过,一个简单的循环体往 往会导致内存成为瓶颈( memory-
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    典型代表 方案特点分析 Zadig 方案优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 运行效率低,管理维护成本高 方案局限性大,安全性风险高 无法支持敏捷交付模式;手工维护成本 高,阻碍业务交付效率 面向多服务并行部署,安全发布, 0 维护负担 支撑云原生构建 / 运行环境,多云异构支持及企业 级登录权限支持 传统运维管理类平台 蓝鲸 Rainbond 3 Zadig 平台工程模式及 应用场景、架构解析 开发者自服务 • 通过自服务的方式来加快发布速 度,无需与运维持续沟通 降低个人心智负担 • 通过平台工程,将底层的复杂性 抽象化,降低个人心智负担,提 高开发效率 可重用降低运维成本 • 一些组织可能过度依赖高级工程 师管理发布流程和基础设施,导 致资源浪费和效率低下 Zadig 平台工程模式 工程规模数据: • 1500+
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    ,工作复杂度为 O(n) ,其中 n 是元素个数 改进的并行缩并( GPU ) • 刚才那种方式对 c 比较大的情况不友好, 最后一个串行的 for 还是会消耗很多时间 。 • 因此可以用递归的模式,每次只使数据缩 小一半,这样基本每次都可以看做并行的 for ,只需 log2(n) 次并行 for 即可完成 缩并。 • 这种常用于核心数量很多,比如 GPU 上 的缩并。 结论:改进后的并行缩并的时间复杂度为 结束都需要同步,一定程度上妨碍了 CPU 发挥性能;而 且每个 step 后依然写回了数组,数据缓存没法充分利用 。 另辟蹊径:流水线并行 加速比: 6.73 倍 反直觉的并行方式,但是加速效果却很理想,为什么? 流水线模式下每个线程都只做自己的那个步骤( filter ),从 而对指令缓存更友好。且一个核心处理完的数据很快会被另一 个核心用上,对三级缓存比较友好,也节省内存。 且 TBB 的流水线,其实比教科书上描述的传统流水线并行更加优化: 还有好处是他无需先把数据全读到一个内存数组里, 可以流式处理数据( on-fly ),节省内存。 • 不过需要注意流水线每个步骤( filter )里的工作量最 好足够大,否则无法掩盖调度 overhead 。 总结:各种并行模式 • 从串行到并行,从来就没有什么万能膏药。 • CPU 上的并行尚且如此,何况 GPU 。 • 熟悉原理、反复实验,才能优化出好程序。 • 本课仅入门,深入可以看 Pro TBB 这本书。
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    • shared_lock 同样支持 defer_lock 做参数 , owns_lock() 判断等,同学们自己研究 。 只需一次性上锁,且符合 RAII 思想:访问者模式 Accessor 或者说 Viewer 模式,王鑫磊常用于设计 GPU 容器 OpenVDB 数据结构的访问,也是采用了 Accessor 的设计…… 并且还有 ConstAccessor 和 Accessor 两种,分别对应于读和 线程被唤醒时,只有一个能够被启动。如 果不需要,在 wait() 返回后调用 lck.unlock() 即可。 • 顺便一提, wait() 的过程中会暂时 unlock() 这个锁。 案例:实现生产者 - 消费者模式 • 类似于消息队列…… • 生产者:厨师,往 foods 队列里推送食品 ,推送后会通知消费者来用餐。 • 消费者:等待 foods 队列里有食品,没有 食品则陷入等待,直到被通知。 条件变量:将
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件1311陈明煜2023RustChinaConf090310Zadig面向开发开发者原生DevOps平台0605
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩