积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(16)C++(13)系统运维(3)DevOps(2)Rust(2)Go(1)云计算&大数据(1)Kubernetes(1)存储(1)

语言

全部中文(简体)(19)中文(简体)(1)

格式

全部PPT文档 PPT(20)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 20 个.
  • 全部
  • 后端开发
  • C++
  • 系统运维
  • DevOps
  • Rust
  • Go
  • 云计算&大数据
  • Kubernetes
  • 存储
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 Zadig 产品使用手册

    研发数字化转型方案正成为产业数字化战略的核心环节 Zadig 设计思路:通过「平台工程」解决流程挑战,通过「技术升级」提升组织效能 01 04 02 03 工程化协同:“人、技术、流 程、工具” 四维协同基线,沉 淀全流程数据,从感知到赋 能,服务于工程师 释放云基建能力:链接任何云 及自建资源(容器、主机、车 机、端等),释放云原生价值 和企业创新力 生态开放:广泛开放系统 模块和 多服务并行部署发布,云原生构建环境和运行 环境,基础设施对接及企业级 SSO/ 权限管理 等 运维管理类平台 蓝鲸 Rainbond KubeSphere KubeVela 面向资源管理的运维工具集 面向开发者,需结合 CI/CD 工具额外 搭建全流程能力 专门面向开发者的生产力平台,涵盖需求到开 发,测试,运维的云原生一体化技术底座支撑 云厂商 DevOps 平台 华为云 DevCloud Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 开发 Zadig 核心特性: 运维 真正意义的持续交付:以工程师体验为核心,价值交付为理念,完成需求到发布的全路径。 测试 发布 洞察 一堆复杂脚本、维护成本极高 员工手工操作费时费力易出错 手动更新服务、手动打包、交付
    0 码力 | 52 页 | 22.95 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN 研发透明化:不同项目清晰可见的效率、质量、进度 进度管理:根据团队客观数据,预测和确定项目规划 迭代进度一目了然 项目从无到有可核算 管理有数据科学依据 解放管理,更多时间花在 业务创新 平台运维 业务压力大,能力建设缓慢: • 大量工作花在工具链维护 • 项目间依赖复杂,环境管理难 • 交付版本依赖工单,发布风险高 • 公共资源 / 业务资源利用率低 赋能多业务:一个平台解决了多异构项目的管理和规范 价值清晰呈现:为管理者提供全视角效能数据,赋能数字决策 人工低效操作减少 80% 构建资源利用率提升 60% 业务资源利用率提升 30% 统一治理内部规范,开发 自助上线;解放运维,工 作重心向业务稳定性保 障,建设平台工程体系 研发 研发时间被大量占用: • 本地开发环境难模拟 • 多业务联调艰难,诊断耗时多 • 出现问题诊断耗时多 • 流程割裂协作痛苦,响应慢
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 09 CUDA C++ 流体仿真实战

    用于分配一个三维数组。 各维度上的大小通过 cudaExtent 指定,方 便起见我们的 C++ 封装类用了 uint3 表示 大小。 • GPU 的多维数组有特殊的数据排布来保障 访存的高效,和我们 CPU 那样简单地行主 序或列主序(如 a[x + nx * y] )的多维数组 不一样。 • 随后可用 cudaMemcpy3D 在 GPU 的三 维数组和 CPU 的三维数组之间拷贝数据。 tex3D 来读取纹理中的值。 • 之所以纹理是因为 GPU 一开始是渲染图形的专用硬件 ,会用到一些贴图等,这就是二维的纹理。 • 当输入的浮点坐标不是整数时,由 GPU 硬件提供双线 性插值( bilerp ),比手写的高效许多。 • 当然如果是三维数组,那就是三维纹理对象,访问时是 提供三线性插值( trilerp )的。 CUDA 纹理对象:封装 • 其中 cudaTextureAddressMode 示意: 00 | ABCDE | 00 • cudaAddressModeWrap :重叠模式(循环) • 示意: DE | ABCDE | AB • cudaAddressModeMirror :镜像模式 • 示意: BA | ABCDE | ED CUDA 纹理对象:封装 • 其中 cudaTextureFilterMode 表示采样的坐标不是整数 时要如何在周围 8 个值之间插值,有以下几种选择:
    0 码力 | 58 页 | 14.90 MB | 1 年前
    3
  • ppt文档 基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺

    A Multi-address DSN(Data Source Name) parser. TDengine 应用开发组 • Python/Rust/Go 连接器 • 数据可视化 • 数据库运维工具 • 第三方数据源接入 • BI 系统接入 https://taosdata.com/ https://github.com/zitsen CONTENTS 自 我 介 绍 T D e u s t 使 用 TDengine: 时序数据库 TDengine 是一款开源、云原生的时序数据库( Time Series Database ),专为物联网、工业互联网、金融、 IT 运维监控等场景设计并优化,具有极强的弹性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等 系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个极简的时序数据处理平台。 • 大量设备大量数据归集存储,存储压力大 • 数据总线 / 消息队列消息接入,定制化程度要求高 • 数据业务逻辑自定义需求强 • 一定的实时数据分析能力 taosX - 功能路线图 集群运维 数据接入 流式处理 流式处理 数据分享 开放平台 • Backup/Restore • Replication • Migration • Data Sources • IoT Protocols
    0 码力 | 29 页 | 2.26 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    国信通产业集团等电力能源行业提供数据智能产品解决方案及长期服务。 海致专注为政府、金融、能源等客户提供大数据处理、分析、挖掘服务,在互 联网技术基础上,打造专业、易用的企业级大数据实战应用产品及解决方案。 北京中关村总部 武汉运维中心 深圳研发中心 上海应用中心 专注于数据智能技术赋能中国数字经济发展 海致高性能图计算院士专家工作站 郑纬民 - 海致科技首席科学家 中国工程院院士、清华大学计算机科学与技术系教 授 为已有的分析模型增加“关系特征”维 度 客户贡献度 客户信用分 客户忠诚度 客户欺诈分 客户风险度 违约概率 客户资质 … 集团关系 社群关系 欺诈团伙 担保关系 资金圈 / 链 …  设别出带有某种共同特征 的企业或个人群体 舆情传导 营销传导 风险传导 …  计算某个事件在关联的企业、个人 之间的传递过程和传递概率 图深度学习及其应用场景 图嵌入 • 将高维的图信息映射到低维向量中 • 通过图嵌入将客户关系表示为低维向量,可以结合其 他客户行为特征进行机器学习训练 图卷积神经网络 • 对图结构数据进行卷积计算 • 通过已有的企业数据,通过 GCN 进行半监督学习和分 类,预测企业的违约概率 传统的关系型数据库的存储方式丢失了事物之间的关系信息 Relational Table Real World Multi-Context is Preserved with Graph
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 ,其中 c 是线程数量 封装好了: parallel_for 面向初学者: parallel_for 基于迭代器区间: parallel_for_each 二维区间上的 for 循环: blocked_range2d 三维区间上的 for 循环: blocked_range3d 所有区间类型 第 2 章:缩并与扫描 缩并( reduce ) 1 个线程,依次处理 8 个元素的缩并,花了 ,需要做大量数学运算,因此瓶颈在 ALU 。 • 这里卖个关子,欲知后事如何,请待下集揭晓! 更专业的性能测试框架: Google benchmark • 手动计算时间差有点太硬核了,而且只运 行一次的结果可能不准确,最好是多次运 行取平均值才行。 • 因此可以利用谷歌提供的这个框架。 • 只需将你要测试的代码放在他的 • for (auto _: bm) • 里面即可。他会自动决定要重复多少次,
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    示当前编译所针对的 GPU 的架构版本号 是多少。这里是 520 表示版本号是 5.2.0 ,最后一位始终是 0 不用管,我们 通常简称他的版本号为 52 就行了。 • 这个版本号是编译时指定的版本,不是运 行时检测到的版本。编译器默认就是最老 的 52 ,能兼容所有 GTX900 以上显卡。 https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index threadIdx 三维的板块和线程编号 • CUDA 也支持三维的板块和线程区间。 • 只要在三重尖括号内指定的参数改成 dim3 类型即可。 dim3 的构造函数就是接受三 个无符号整数( unsigned int )非常简单 。 • dim3(x, y, z) • 这样在核函数里就可以通过 threadIdx.y 获取 y 方向的线程编号,以此类推。 那二维呢? • 需要二维的话,只需要把 方向有大小,就相当于二维了,不会有 性能损失。实际上一维的 <<>> 不 过是 <<>> 的简写而已。 图片解释三维的板块和线程 • 之所以会把 blockDim 和 gridDim 分三维主要是因为 GPU 的业务常常涉及到三维图形学和二维图像,觉得 这样很方便,并不一定 GPU 硬件上是三维这样排列 的。
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 GPU Resource Management On JDOS

    常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态 资源,提高 GPU 利用率 – Job 调度 (部门 quota 限制 + 优先级) • 创建训练 – 用户选择集群提供代码地址和执行命令即可 – 选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供 tensorboard 任务列表 可以指定 git Serving 服务,只需用户指定模型,即可提供 grpc 和 rest 服务,同时使用 GPU 复用 +HPA 提高 GPU 利用率 创建 Serving 与训练集成 • 用户只需要简单选择机房和 镜像填写模型名即可完成 Serving 服务创建 自有模型 • 用户只需要填写模型地址即 可 GPU 监控 • 容器监控服务,自适 应 GPU 容器,可根据 容器 IP 查询记录 , 便 于用户查看服务状态
    0 码力 | 11 页 | 13.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    做的事情相当于:读 + 写,从而 每个元素只需要访问两遍内存。对这种完全 mem-bound 的程 序而言就是加速了 2 倍。 测试结果 可见,能否很好的利用缓存,和程序访问内存的时间局域性有关。 案例:一维 jacobi 迭代 • 一些物理仿真中,常用到这种形式的迭代法: • for (i=0...n) b[i] = a[i + 1] + a[i - 1]; // 假装是 jacobi • swap(a • 其实操作系统惰性分配的特性,也是 SPGrid ( Sparsely-Paged-Grid )得以实现的基础 ,他利用 mmap 分配比机器大得多的内存(比如 2048*2028*1024 的三维网格),然后 在里面索引,这样就相当于利用硬件的分页机制实现了稀疏数据结构,既能高效利用内存 ,随机访问和插桩又特别高效。有兴趣可以研究一下他们的论文,也用了莫顿序增强 TLB 和缓存的局域性,非常精彩。 float a[n]; 可以在栈上分配有 n 个元素的一维数组。 • 通过 a[i] 访问第 i 个元素。 • float a[n][m]; 可以在栈上分配 n 行 m 列的二维数组。 • 通过 a[i][j] 访问第 i 行,第 j 列的元素。 等一下……内存是一维的,为什么可以分配二维的数组? • 众所周知,内存是一维的,因此任何二维数组,都必须被扁平化,才能储存在内存中。 • 对于 float
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    图片解释稀疏的好处 传统稠密二维数组 无边界稀疏分块哈希表 有了无边界的稀疏网格,再也不用担心二维数组要分配多大了。 坐标可以无限延伸,甚至可以是负数!比如 (-1,2) 等…… 他会自动在写入时分配 16x16 的子网格,称之为叶节点 (leaf node) ,而这里的 unordered_map 就是充当根节点 (root node) 。 图片解释稀疏的好处 传统稠密二维数组 无边界稀疏分块哈希表 tbb::parallel_for 为了支持 std::unordered_map 先把要遍历的坐标和块 指针放到一个数组里,然后再对这个平坦的数组遍历。 指针数组的话,本来就是平坦的二维数组,直接 用 omp parallel for collapse(2) 遍历二维区间。 把 func 捕获为 firstprivate ,从而支持用 lambda 捕获的访问者模式。 实现访问者模式 • 额,总之就是每一层都有一个缓存。 的,读写访问其 中偏移地址时,会按页的粒度自动分配和释放内存,从而满 足稀疏数据结构“按需分配”的需求。且由于分页是硬件自动 来做的,比我们软件哈希和指针数组的稀疏更高效,写起来 就和普通的二维数组没什么两样,就好像顺序访问。也用不 着什么访问者缓存坐标和块指针了,硬件的 TLB 就是我们 的访问者缓存,而且超快不需要用户自己写。 • 垃圾回收可用 madvice 提前释放一段页面。
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
Zadig产品使用手册使用手册面向开发开发者原生DevOps平台C++高性性能高性能并行编程优化课件09霍琳2023RustChinaConfRust游人RustCCAtlasGraph0608GPUJDOS0710
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩