积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(22)C++(16)Rust(6)数据库(1)系统运维(1)MySQL(1)云计算&大数据(1)Kubernetes(1)DevOps(1)

语言

全部中文(简体)(23)中文(简体)(2)

格式

全部PPT文档 PPT(25)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 25 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 数据库
  • 系统运维
  • MySQL
  • 云计算&大数据
  • Kubernetes
  • DevOps
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 为什么需要构建系统( Makefile ) • 文件越来越多时,一个个调用 g++ 编译链接会变得很麻烦。 • 于是,发明了 make 这个程序,你只需写出不同文件之间的依赖关系,和生成各文件的规则。 • > make a.out • 敲下这个命令,就可以构建出 a.out 这个可执行文件了。 • 和直接用一个脚本写出完整的构建过程相比, make 指明依赖关系的好处: 1. 当更新了 hello.o ,而不需要把 main.o 也重新编译一遍。 2. 能够自动并行地发起对 hello.cpp 和 main.cpp 的编译,加快编译速度( make -j )。 3. 用通配符批量生成构建规则,避免针对每个 .cpp 和 .o 重复写 g++ 命令( %.o: %.cpp )。 • 但坏处也很明显: 1. make 在 Unix 类系统上是通用的,但在 Windows 则不然。 2
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 构造函数! 编写我们自己的 vector 类! 看来 vector 也不过如此!让我们自己实现一个 Vector 类试试看 吧 It works! 这个 Vector 类有哪些问题? 三五法则:规则类怪谈 1. 如果一个类定义了解构函数,那么您必须同时定义 或删除拷贝构造函数和拷贝赋值函数,否则出错。 2. 如果一个类定义了拷贝构造函数,那么您必须同时 定义或删除拷贝赋值函数,否则出错,删除可导致 • 常见的有 std::vector const &arr 等。 • 注:有的教材喜欢这样: const Pig &pig ,仅仅是个人喜好不同,没有实际区 别。 函数参数类型优化规则:按引用还是按值? • 如果是基础类型(比如 int , float )则按值传递: • float squareRoot(float val); • 如果是原始指针(比如 int * , Object
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    Concurrency in Action )不一定就是完美解决方案,要根据实际情况判断。 真正的解决: tbb::spin_mutex 其实主要的瓶颈在于 std::mutex 会切换到操作系统内核中去调度 ,非常低效。而 tbb::spin_mutex 则是基于硬件原子指令的,完全 用户态的实现。区别: std::mutex 的陷入等待会让操作系统挂起 该线程,以切换到另一个;而 tbb::spin_mutex 的代码。 • 要求:自动扩展边界,按需分配内存,垃圾回收及时释放全零的块,用量化的 bit 压缩空 间,使用 omp 或 tbb 并行,用 accessor 缓存坐标以减轻锁的压力。 • 评分规则:加速了多少倍就是多少分。 感谢观看! by 彭于斌( github@archibate ) 录播: https://space.bilibili.com/ 263032155 课件: https://github
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    chenmingyu4@huawei.com 华为 公共开发部 嵌入式软件能力中心 本科就读加州大学圣地亚哥分校,毕业时长两年半, Rustacean 在 华为 目前正在使用 Rust 开发并行调度框架等模块。 Rust 异步并发框架在移动端的应用 陈明煜 chenmingyu4@huawei.com 华为 公共开发部 嵌入式软件能力中心 Applications of Rust Runtime mobile environment Rust 异步机制 Asynchronous Rust 异步并发框架是许多大型应用、系统具备的底层能力。 区别于多线程编程模型,它带来以下优势:  任务调度颗粒度更小,充分利用线程资源  更可控的线程数  单个任务资源占用:几十 KB -> 几百 Byte  任务切换时间 : 10 微秒 -> 100 纳秒 Rust 语言并没有提供异步并发框架, Third Party Runtime 目前 Rust 社区最广泛使用的事件 驱动型调度框架,擅长处理大量异 步 IO 的场景。具有非常强大的生 态。 tokio 第一个适配 Rust async/await 原语 的运行时库,与 tokio 类似支持异步 IO ,目前已经半废弃 async-std 更轻量化的调度框架,功能被拆分 到其他多个库中, IO 密集场景性 能不如 Tokio smol
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 互。并在主线程中等待该任务组里的任务 全部执行完毕。 • 区别在于,一个任务不一定对应一个线程 ,如果任务数量超过 CPU 最大的线程数, 会由 TBB 在用户层负责调度任务运行在 多个预先分配好的线程,而不是由操作系 统负责调度线程运行在多个物理核心。 封装好了: parallel_invoke 更好的例子 第 1 章:并行循环 时间复杂度( time-efficiency )与工作量复杂度( 秒 0 分 30 秒 解决 1 :线程数量超过 CPU 核心数量,让系统调度保证各个核心始终饱和 • 因此,最好不是按照图像大小均匀等分,而是按照工 作量大小均匀等分。然而工作量大小我们没办法提前 知道……怎么办? • 最简单的办法:只需要让线程数量超过 CPU 核心数量 ,这时操作系统会自动启用时间片轮换调度,轮流执 行每个线程。 • 比如这里分配了 16 个线程,但是只有 4 个处理器核心。
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    据。还有点特殊的性质,我们稍后会 讲。 • 通常板块数量总是大于 SM 的数量,这时英伟达驱动就会在多个 SM 之间调度你提交的 各个板块。正如操作系统在多个 CPU 核心之间调度线程那样…… • 不过有一点不同, GPU 不会像 CPU 那样做时间片轮换——板块一旦被调度到了一个 SM 上,就会一直执行,直到他执行完退出,这样的好处是不存在保存和切换上下文(寄 存器,共享内存等)的开销,毕竟 存器,共享内存等)的开销,毕竟 GPU 的数据量比较大,禁不起这样切换来切换去…… • 一个 SM 可同时运行多个板块,这时多个板块共用同一块共享内存(每块分到的就少了) 。 • 而板块内部的每个线程,则是被进一步调度到 SM 上的每个 SP 。 无原子的解决方案: sum 变成数组 • 刚刚的数组求和例子,其实可以不需要原子操作。 • 首先,声明 sum 为比原数组小 1024 倍的数组。 • 然后在 GPU 这样就能保证之前其他线程的 local_sum 都已经写入成功了。 线程组( warp ): 32 个线程为一组 • 其实, SM 对线程的调度是按照 32 个线程为一组 来调度的。也就是说, 0-31 号线程为一组, 32-63 号线程为一组,以此类推。 • 因此 SM 的调度无论如何都是对一整个线程组 ( warp )进行的,不可能出现一个组里只有单独 一个线程被调走,要么 32 个线程一起调走。
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 样一个 过程。简单来说,进程是程序(应用程序,可执行文件)的一次执行。比如双击打开一个 桌面应用软件就是开启了一个进程。 • 线程是进程中的一个实体,是被系统独立分配和调度的基本单位。也有说,线程是 CPU 可 执行调度的最小单位。也就是说,进程本身并不能获取 CPU 时间,只有它的线程才可以。 • 从属关系:进程 > 线程。一个进程可以拥有多个线程。 • 每个线程共享同样的内存空间,开销比较小。 个人写入,没有人读取。 3. 没有人读取,也没有人写入。 读写锁: shared_mutex • 为此,标准库提供了 std::shared_mutex 。 • 上锁时,要指定你的需求是拉还是喝,负 责调度的读写锁会帮你判断要不要等待。 • 这里 push_back() 需要修改数据,因需求 此为拉,使用 lock() 和 unlock() 的组合 。 • 而 size() 则只要读取数据,不修改数据,
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 Await-Tree Async Rust 可观测性的灵丹妙药 - 赵梓淇

    异步编程的共同优势 • async/await 关键字 • 用户态调度 • Async Rust 的独特优势 • Ownership 与 Lifetime • 无栈协程 Async Rust 回顾 Rust 的无栈协程抽象 — Future Async Rust 回顾 • 通过 poll 驱动的状态机 • 组合嵌套为调度单元: Task • async fn 语法糖 Async Rust • Backtrace 不够直观 ( 调用栈 -> 调用树 ) • Tracing 无法追踪调用关系的变化 Async Rust 观测与调试的痛点 Async Rust 回顾 • 特性:用户态调度的无栈协程 • Pending Task 不存在栈空间 • 痛点:观测与调试工具无法还原 Pending Task 的执行状态 • 难以得知 Task 阻塞的位置和原因 • 难以调试 Async
    0 码力 | 37 页 | 8.60 MB | 1 年前
    3
  • ppt文档 应用 waPC (rust) 做软件测试工具

    to modified request • 模拟数据规则 • 自动化测试 • https://github.com/wasmmock/ wasm_mock_server • 用 rust 打包所有测试需求 Wasm mock server Why use rust ? Software testing tool • 模拟数据规则 • 自动化测试 • Company's own protocol backend product line with complex upstream • Common testing platform 大公司抓包工具的需求 软件测试工具 • 模拟数据规则 • 自动化测试 • Supports http/https/tcp/websocket(MITM) • Can use rust to construct own protocol • websocket stand in for wasm API 抓包 - Wasm Mock Server wasm 工具 does not invent the wheel 软件测试工具 • 模拟数据规则 • 自动化测试 ModifyRequest(req *http.Request) error{ … req_,err:=wasm.Invoke(ctx,req.url.path, req_payload)
    0 码力 | 30 页 | 2.50 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    -D 选项:指定配置变量(又称缓存变量) • 可见 CMake 项目的构建分为两步: • 第一步是 cmake -B build ,称为配置阶段( configure ),这时只检测环境并生成构建规则 • 会在 build 目录下生成本地构建系统能识别的项目文件( Makefile 或是 .sln ) • 第二步是 cmake --build build ,称为构建阶段( build ),这时才实际调用编译器来编译代码 Linux 的 make , Windows 的 MSBuild ),从而让构建规则可以只写一份,跨平 台使用。 • 过去的软件(例如 TBB )要跨平台,只好 Makefile 的构建规则写一份, MSBuild 也写一份 。 • 现在只需要写一次 CMakeLists.txt ,他会视不同的操作系统,生成不同构建系统的规则文件。 • 那个和操作系统绑定的构建系统( make 、 MSBuild MSBuild )称为本地构建系统( native buildsystem )。 • 负责从 CMakeLists.txt 生成本地构建系统构建规则文件的,称为生成器( generator )。 -G 选项:指定要用的生成器 • Linux 系统上的 CMake 默认用是 Unix Makefiles 生成器; Windows 系统默认是 Visual Studio 2019 生成器; MacOS
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件010210陈明煜2023RustChinaConf060805赵梓Await-TreeRust潘泳权wpac11
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩