积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(17)C++(14)Rust(3)

语言

全部中文(简体)(17)

格式

全部PPT文档 PPT(17)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 17 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    ,内存管理与对象生命周期 10. C++ 异常处理机制的前世今生 我们都要认真鞋习哦 我们都要认真鞋习哦 第一章:读取与写入 我负责监督你鞋习 ! 我负责监督你鞋习 ! map 查找元素的两个接口 • map 提供了两个查找元素的接口,一曰 [] ,二曰 at 。 • 那么他们两个又有什么区别呢?很多新手都分不清他俩,可能只认识 [] 。 读取 map 元素 • map 从小到大的顺序。 k k k k k k v v v v v v 小 大 第三章:二叉排序树 高效的查找离不开我 高效的查找离不开我 回顾 set 容器 • 上一期 (BV1m34y157wb) ,我们已经讲了 set 容器,特点是自动去重 + 高效查找。 • set 容器中的类型通过模板来指定: set • set 容器又可以分为 set 、 multiset 、 vector 查找为什么低效 • vector 又称线性数组。在 vector 中查找元素可以用 头文件里的 std::find 。 • vector a = { 1, 4, 2, 8, 5, 7 }; • std::find(a.begin(), a.end(), 5); • 这个 std::find 就是标准库帮我们实现的线性数组中查找元素的算法,让我们用动画演示一
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    妙用本用于指针的指令,尽管此时 rdi 和 rsi 并不是指针 整数加常数乘整数:都可以被优化成 leal 因为这种线性变换在地址索引 中很常见,所以被 x86 做成 了单独一个指令。这里尽管不 是地址,但同样可以利用 lea 指令简化生成的代码大小。 eax = rdi + rsi * 8 指针访问对象:线性访问地址 rsi = (int64_t)esi eax = *(int *)(rdi + rsi * 发现:会让编译变得很慢,因为这 50000 次迭代是在编译期进行的。 第 2 章:内联 调用外部函数: call 指令 @PLT 是 Procedure Linkage Table 的缩 写,即函数链接表。链接器会查找其他 .o 文件中是否定义了 _Z5otheri 这个符号, 如果定义了则把这个 @PLT 替换为他的地 址。 对 PLT 感兴趣?看 https://www.cnblogs.com/panne 编译器还可以用: • #pragma GCC ivdep • 表示忽视下方 for 循环内可能的指针别名现象 。 • 不同的编译器这个 pragma 指令不同,这里只 是拿 GCC 举例,其他编译器请自行查找资料 。 循环中的 if 语句:挪到外面来 乘法模式 加法模式 这个案例中,作者的用意很明显,在 is_mul 为真时 执行 a *= b ,否则执行 a += b 。 然而有 if 分支的循环体是难以
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    的厂商早就意识到了内存延迟高,读写效率低 下的问题。因此他们在 CPU 内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 数据。如果没有,则从内存中读取,并存储到缓存中; 如果有,则直接使用缓存中的数据。 • 这样一来,访问的数据量比较小时,就可以自动预先加 载到这个更高效的缓存里,然后再开始做运算,从而避 • uint64_t address; • char data[64]; • }; • CacheEntry cache[512]; • 当 CPU 读取一个地址时: • 缓存会查找和该地址匹配的条目。如果找到,则给 CPU 返 回缓存中的数据。如果找不到,则向主内存发送请求,等读 取到该地址的数据,就创建一个新条目。 • 在 x86 架构中每个条目的存储 64 字节的数据,这个条目 • uint64_t address; • char data[64]; • }; • CacheEntry cache[512]; • 当 CPU 写入一个地址时: • 缓存会查找和该地址匹配的条目。如果找到,则修改缓存 中该地址的数据。如果找不到,则创建一个新条目来存储 CPU 写的数据,并标记为脏( dirty )。 • 当读和写创建的新条目过多,缓存快要塞不下时,他会把
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 Rust与算法 - 谢波

    广 写作动机 当情况不明时,抱着一个纯粹的目标干事就行了,其他 的留给时间检验。不懂就学,技术写作更像一种共创, 要反复总结和修改 ( 费曼学习法 ) 。 写作本书给我的启示 基础、排序、查找、树、图 代码框、颜色、图片绘制均由 Latex 完成 可参考点 为什么 为什么讲这个话题? 为什么要讲数据结构和算法两部分? 算法相关知识 算法相关知识 • 抽象数据类型 • 时空复杂度 时间复杂度更被看重 • 时间和空间复杂度不是对立的,可以协同 时间和空间复杂度 复杂度计算 • 大O标记法(数量级近似) • 用 AI 来估计 算步骤、算存储 Rust 基本数据结构复杂度 线性数据结构 非线性数据结构 总体来看,时间复杂度没有超过 O(n) 的! Rust 实现数据结构 • 栈 • 链表 • Vec Rust 实现数据结 构 栈 借助 Vec 容器 泛型支持 Option
    0 码力 | 28 页 | 3.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    • 不过把 lut 作为数组的方法只适用于自变量 x 连 续变化的情况,如果不连续,则只好采用 map 查表了(相当于 Python 的字典)。 • 不过 map 的查找开销更大,复杂度为 O(logn) ,比线性数组的 O(1) 要坏一点点。 • 所以采用 map 也可能导致反而比暴力 if-else 更 低效,也可能高效,要测试才知道。 • 抛开性能不谈,从可读性和可维护性上来 • 注:实际中虚函数往往有很多个,为了存储空间的高效利用,会把多个虚函数打包成一个数组,称之 为“虚函数表( vtable )”。这样一来,类成员里只需要存一个指向虚函数表首地址的指针,之后通过 查找该表即可找到连续的 n 个函数指针。此处为了方便理解,右侧案例代码没有用虚函数表。 课外拓展 · 参考资料 • 堆栈和 ABI 的知识 https://zhuanlan.zhihu.com/p/27339191
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 09 CUDA C++ 流体仿真实战

    标来访 问,且提供了线性滤波的能力。 • 在核函数中可以通过 tex3D 来读取纹理中的值。 • 之所以纹理是因为 GPU 一开始是渲染图形的专用硬件 ,会用到一些贴图等,这就是二维的纹理。 • 当输入的浮点坐标不是整数时,由 GPU 硬件提供双线 性插值( bilerp ),比手写的高效许多。 • 当然如果是三维数组,那就是三维纹理对象,访问时是 提供三线性插值( trilerp 纹理对象:封装 • 其中 cudaTextureFilterMode 表示采样的坐标不是整数 时要如何在周围 8 个值之间插值,有以下几种选择: • cudaFilterModeLinear :三线性插值更平滑(左图) • cudaFilterModePoint :最接近的那个点作为值(右 图) 烟雾仿真系统:封装 • 我们统一通过 unique_ptr 来管理对象,这样尽管 CudaSurface 代码(二维定常流仿真),主要由 k-ye 编写 ,我学习 GAMES201 后贡献了支持 RK2 和 RK3 的版本。这里我们用高效的 CUDA 纹理对象 在 C++ 中重新实现了一遍,利用了硬件的三线性插值实现半拉格朗日( semi-lagrangian )对流。 对流部分:根据对流后位置重新采样 • 和 k-ye 思路不同的是我先在刚刚的 advect_kernel 算出对流后要采样的位置(
    0 码力 | 58 页 | 14.90 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    图平台 Atlas Studio Atlas Client 基础 设施 Docker/K8S/VM X86/ARM - 基于 RUST 语言保证性能优势 - 分布式架构性能可线性扩展 - 针对大规模图优化的存算引擎 - 配合 Atlas 图平台,实现无代码图分析 - Query 性能分析模块,启发式提示优化 - 内置多种分析函数,面向分析师友好 -MVOCC 保证事务一致性 体展现 可视化图探索分析 AtlasGraph 架构及实现 图技术简介 Takeway AtlasGraph 图数据库关键特性 - 基于 RUST 语言保证性能优势 - 分布式架构性能可线性扩展 - 针对大规模图的优化的存算引擎 - 配合 Atlas 图平台,实现无代码图分析 - Query 性能分析模块,启发式提示优化 - 内置多种分析函数,面向分析师友好 -MVOCC 保证事务一致性
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    的处理能力,是吗? • 显然不是。甚至在两个处理器上同时运行两个线程也不见得可以获得两倍的性能。相似的 ,大多数多线程的应用不会比双核处理器的两倍快。他们应该比单核处理器运行的快,但 是性能毕竟不是线性增长。 • 为什么无法做到呢?首先,为了保证缓存一致性以及其他握手协议需要运行时间开销。在 今天,双核或者四核机器在多线程应用方面,其性能不见得的是单核机器的两倍或者四倍。 这一问题一直伴随 CPU 2 3 4 解决 3 :每个线程一个任务队列,做完本职工作后可以认领其他线程的任务 工作窃取法( work-stealing ) 原始的单一任务队列 解决 4 :随机分配法(通过哈希函数或线性函数) • 然而队列的实现较复杂且需要同步机制,还是有一 定的 overhead ,因此另一种神奇的解法是: • 我们仍是分配 4 个线程,但还是把图像切分为 16 份。然后规定每一份按照 xy
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 14 C++ 标准库系列课 - 你所不知道的 set 容器

    会把重复的元素 去除,只保留一个,即去重。 • 区别 3 : vector 中的元素在内 存中是连续的,可以高效地按 索引随机访问, set 则不行。 • 区别 4 : set 中的元素可以高 效地按值查找,而 vector 则 低效。 set 的排序: string 会按“字典序”来排 • set 会从小到大排序,对 int 来 说就是数值的大小比较。那么对 字符串类型 string 要怎么排序 复的元素,但仍保留自动排 序,能高效地查询的特点。 • 特点:因为 multiset 不会去 重,但又自动排序,所以其 中所有相等的元素都会紧挨 着,例如 {1, 2, 2, 4, 6} 。 查找 multiset 中的等值区间 • 刚刚说了 multiset 里相等的 元素都是紧挨着排列的。 • 所以可以用 upper_bound 和 lower_bound 函数获取 所有相等值的区间。 upper_bound(2) 查找 multiset 中的等值区间 • 对于 lower_bound 和 upper_bound 的参数相同的 情况,可以用 equal_range 一次性求出两个边界,获得 等值区间,更高效。 • pair equal_range(int const &val) const; 查找 multiset 中的等值区间
    0 码力 | 83 页 | 10.23 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南

    六、头文件和源文件的一一对应关系 • 通常每个头文件都有一个对应的源文件,两个文件名字应当相同 (方便我们理解,也方便 IDE 跳转),只有后缀名不一样。 • 如果是一个类,则文件名应和类名相同,方便查找 ( Animal.cpp )。 • 头文件中包含函数和类的声明,源文件则包含他们的实现。 七、只有头文件,没有源文件的情况 • 有时我们会直接把实现直接写在头文件里,这时可以没有与之对 应的源文件,只有一个头文件。 中的所有路径下查找 XXX.cmake 这个文件。 • 这样你可以在 XXX.cmake 里写一些你常用的函数,宏,变量等。 十三、你知道吗? CMake 也有 include 功能 • 和 C/C++ 的 #include 一样, CMake 也有一个 include 命令。 • 你写 include(XXX) ,则他会在 CMAKE_MODULE_PATH 这个列表 中的所有路径下查找 XXX find_package(OpenCV) • 查找名为 OpenCV 的包,找不到不报错,事后可以通过 ${OpenCV_FOUND} 查询是否找到。 • find_package(OpenCV QUIET) • 查找名为 OpenCV 的包,找不到不报错,也不打印任何信息。 • find_package(OpenCV REQUIRED) # 最常见用法 • 查找名为 OpenCV 的包,找不到就报错(并终止
    0 码力 | 56 页 | 6.87 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件170407谢波2023RustChinaConf大会Rust算法Shieber09游人RustCCAtlasGraph061416
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩