积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(29)C++(18)Rust(11)系统运维(2)DevOps(2)云计算&大数据(1)Kubernetes(1)

语言

全部中文(简体)(31)中文(简体)(1)

格式

全部PPT文档 PPT(32)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 32 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 云计算&大数据
  • Kubernetes
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 陈东 - 利用Rust重塑移动应用开发-230618

    第三届中国 Rust 开发者大会 利用 Rust 重塑移动应用开发 陈东 Aaron Chen CTO AccountLabs Rust China Conf 2023 2023 移动应用开发有那些选择? 1. Native 2. Flutter 3. React Native ? 利用 Rust 重塑移动应用开发 React Native is an open-source reload - Rendering Engine 利用 Rust 重塑移动应用开发 跨平台开发的优势和局限性 Pros: - Fast - Single Codebase - Third-party support (Javascript better than Dart) 利用 Rust 重塑移动应用开发 跨平台开发的优势和局 限性 Cons: - Performance - utilize - Existing Codebase 跨平台开发到到底 应该跨什么? UI or Logic ? 利用 Rust 重塑移动应用开发 Rust 在移动端应 用的价值 Rust is the only advanced choice for cross platform development. 利用 Rust 重塑移动应用开发 Rust 的特点 Why Rust?
    0 码力 | 22 页 | 2.10 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    第三届中国 Rust 开发者大会 Rust 异步并发框架在移动端的应用 陈明煜 chenmingyu4@huawei.com 华为 公共开发部 嵌入式软件能力中心 本科就读加州大学圣地亚哥分校,毕业时长两年半, Rustacean 在 华为 目前正在使用 Rust 开发并行调度框架等模块。 Rust 异步并发框架在移动端的应用 陈明煜 chenmingyu4@huawei.com Rust #1 Rust 异步简介 Ylong async runtime #3 Ylong Runtime 并发框架 目录 Table of Contents #2 社区并发框架介绍以及与移动端的不适配性 Introduction to third party Runtime crates and their incompatibility with mobile environment 现有框架无法完美适配移动端(一) Core Thread Thread Worker Worker task task Local queue Local queue Tokio 采用了如右图这种 GMP 模式: • 一核可以绑定多线程,每个线程拥有一个 Worker ,每个 Worker 拥有一个任务队列 • 但线程拥有相同优先级 • Worker 只持有一个本地 FIFO 队列 移动端诉求:优先级
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN 重视开发者体验,工程师不再做脏活累活 传统 DevOps 体系 Zadig 云原生 DevOps 平台 高人效 低人效 低人效 / 低质量 / 低效率 / 高成 本: 人淹没在系统的海洋里,无数平台手工切换 高人效 / 高质量 / 高效率 / 低成 本: 人在系统之外 / 上,复杂性下沉到单一平台 希望 工程师不再花时间在开发写代码之外的脏活累活,比如服务部署、找环境,服务编排等 Infra 优 化 、 开 发 者 体 验 增 强 2023 年 面向生态伙伴开放场景 面向开发者提供 IDE 插件 / 自测环境 通用工作流广泛链接生态赋能开发者 企业解决方案和最佳实践内置 发布 AI 增强解决方案 企 业 开 放 性 、 A I 能 力 增 强 产品发展历程 高频极速迭代: Zadig 开源 29 个月共迭代 21 个版本 “ ” 开发者常处于 今天发版、明早升级
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 从一个案例看 C++ 的历史 • 求一个列表中所有数的和: # 参考资料 - 的存在是出于兼容性和性能的考虑。 << 取决于内存的随机值 编译器默认生成的构造函数:无参数( POD 陷阱解决方案) • 不过我们可以手动指定初始化 weight 为 0 。 • 通过 {} 语法指定的初始化值,会在编译器自 动生成的构造函数里执行。 编译器默认生成的构造函数:无参数( POD 陷阱解决方案,续) • 不过我们可以手动指定初始化 weight 为 0 。 • 通过 {} 语法指定的初始化值,不仅会在编译 如果一个类定义了拷贝构造函数,那么您必须同时 定义或删除拷贝赋值函数,否则出错,删除可导致 低效。 3. 如果一个类定义了移动构造函数,那么您必须同时 定义或删除移动赋值函数,否则出错,删除可导致 低效。 4. 如果一个类定义了拷贝构造函数或拷贝赋值函数, 那么您必须最好同时定义移动构造函数或移动赋值 函数,否则低效。 三五法则是前人总结的,避免犯错的经验。 只告诉做什么,不告诉为什么,是不深入的。
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    企业级数据解决方案专家 为建行、工行、交行、招行、上交所、深交所、中国人寿等 70+ 银行证券保险 企业、公安部、上海市公安局、武汉市公安局等 100+ 公安机构,国家电网、 国信通产业集团等电力能源行业提供数据智能产品解决方案及长期服务。 海致专注为政府、金融、能源等客户提供大数据处理、分析、挖掘服务,在互 联网技术基础上,打造专业、易用的企业级大数据实战应用产品及解决方案。 北京中关村总部 存 储、索引及复制难题,提出了基于图缩减的高效分析方法,并孵化出了一个大 规模图数据分析平台 AtlasGraph 。 5 获得 2022 年中国电子学会科学技术奖科技进步一等奖 中国电子学会发布的《 2022 中国电子学会科学技术奖公告》,海 致星图与北京邮电大学、蚂蚁科技集团有限公司、中移动信息技术 有限公司联合研发的“大规模复杂异质图数据智能分析技术与规模化 应用”项目,斩获 的建模能力不足、结构知识难用、巨量数据难算等技术挑战,实现了大规模复杂异质图数 据的表示学习模型、语义推荐和风险管理关键技术,构建了完整的兼具理论指导与应用检 验的大规模图数据智能分析系统与平台,满足了大数据时代从复杂异质图数据中进行知识 发现的重要需求。最终获得国内外授权发明专利 43 项, CCF -A 类论文 51 篇,获得 2 次国际竞赛冠军,参与了 2 项图计算相关标准制定。
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 温馨提示: 1. 会用到第二讲( RAII 与智能指针)里的知识 2. 课件中一部分代码是基于 C++17 的 个人认为, C++11 中很多特性, 其实可以看做是为了支持多线程而 顺带引入的……如 chrono 、移动 、 lambda 、 RAII…… milliseconds 是 duration 的类型别名 这里我们创建了 double_ms 作为 duration 的别名 跨平台的 sleep : std::this_thread::sleep_for • 可以用 std::this_thread::sleep_for 替代 Unix 类操作系统专有的的 usleep 他自定义了解构函数,删除了拷贝构造 / 赋 值函数,但是提供了移动构造 / 赋值函数。 • 因此,当 t1 所在的函数退出时,就会调用 std::thread 的解构函数,这会销毁 t1 线程 。 • 所以, download 函数才会出师未捷身先死 ——还没开始执行他的线程就被销毁了。 解构函数不再销毁线程: t1.detach() • 解决方案:调用成员函数 detach() 分离该 线程——意味着线程的生命周期不再由当
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:从并发到并行 摩尔定律:停止增长了吗? • 晶体管的密度的确仍在指数增长,但处理器主 结论:改进后的并行扫描的时间复杂度为 O(logn) ,工作复杂度为 O(nlogn) 。 可见,并行后虽然降低了时间复杂度,但是以提升工作复杂度为代价! 更多细节,敬请期待 GPU 专题,我们会以 CUDA 为例详细探讨两全方案。 封装好了: parallel_scan 第 3 章:性能测试 案例: map 与 reduce 的组合 测试所花费时间: tbb::tick_count::now() 并行和串行的速度比较 且都是最近访问过的,从而已经在缓存里可以 直接读写,避免了从主内存读写的超高延迟。 • 下次课会进一步深入探讨访存优化,详细剖析 这个案例,那么下周六 14 点敬请期待。 第 6 章:并发容器 std::vector 扩容时会移动元素 • std::vector 内部存储了一个指针,指向一段容量 capacity 大于等于其 size 的内存。 • 众所周知, push_back 会导致 size 加 1 ,但 当他看到容量
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针

    位。 Windows 认为 long 不论 32 位系统还是 64 位系统都一样应该为 32 位,认为这样安全。 因此我们在编写 C 语言程序时,应该避免使用 long 类型,他会导致你的程序难以跨平台。 除了 long 之外的其他类型则没有区别,可以放心使用。 无符号整数: unsigned 修饰 有符号版本 无符号版本 char unsigned char short unsigned typedef int int32_t; • typedef long long int64_t; • 这样不论操作系统对类型的定义如何混乱,这些标准化的类型都是确定的大小。 • 这就避免了跨平台的麻烦,而且直接他们在类型名字中直接写明了类型的大小,更直观。 标准化的类型: stdint.h • 除了有符号的 int32_t 系列外,也提供了无符号 uint32_t 系列: • typedef • 而 32 位平台上的指针是 32 位, 64 位平台上的指针是 64 位。 • 所以是不是需要根据当前平台来判断要使用哪一种代码了? • 不需要,可以用自动随系统位数变化的 intptr_t 和 uintptr_t ! • intptr_t 在 32 位平台上等价于 int32_t ;在 64 位平台上等价于 int64_t • uintptr_t 在 32 位平台上等价于 uint32_t
    0 码力 | 128 页 | 2.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    逆序;连续、跨步)能被识别出来,而如果你的访存是随机的,那就没 办法预测。遇到这种突如其来的访存时, CPU 不得不空转等待数据的抵 达才能继续工作,浪费了时间。 解决:按更大的分块( 4096 字节)随机访问 • 解决方案就是,把分块的大小调的更大一些,比 如 4KB 那么大,即 64 个缓存行,而不是一个。 • 这样一次随机访问之后会伴随着 64 次顺序访问, 能被 CPU 检测到,从而启动缓存行预取,避免了 因此硬件出于安全,预取不能跨越页边界,否则可能会触 发不必要的 page fault 。所以我们选用页的大小,因为本 来就不能跨页顺序预取,所以被我们切断掉也无所谓。 • 另外,我们可以用 _mm_alloc 申请起始地址对齐到页边 界的一段内存,真正做到每个块内部不出现跨页现象。 手动预取: _mm_prefetch • 对于不得不随机访问很小一块的情况,还可以通过 _mm_prefetch _mm_malloc(n, aalign) 可以分配对齐 到任意 a 字节的内存。他在 这个头文件里。是 x86 特有的,并且需要通 过 _mm_free 来释放。 • 还有一个跨平台版本(比如用于 arm 架构) 的 aligned_alloc(align, n) ,他也可以分配对 齐到任意 a 字节的内存,通过 free 释放。 • 利用他们可以实现分配对齐到页面( 4KB
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 Zadig 产品使用手册

    释放工程师创造力 DevOps 价值链平台 产 业 数 字 化 核 心 资 产 是 软 件 和 数 据 : 传 统 软 件 / 配 置 / 数 据 迭 代 方 式 已 经 无 法 适 应 , 软 件 工 程 化 时 代 已 然 到 来 。 Z a d i g 软 件 工 程 平 台 是 国 内 落 地 程 度 最 深 、 使 用 范 围 最 广 ( 近 千 家 企 业 ) 的 云 原 原 生 D e v O p s 平 台 。 领先企业抢先实践 Zadig Zadig 研发数字化转型方案正成为产业数字化战略的核心环节 Zadig 设计思路:通过「平台工程」解决流程挑战,通过「技术升级」提升组织效能 01 04 02 03 工程化协同:“人、技术、流 程、工具” 四维协同基线,沉 淀全流程数据,从感知到赋 能,服务于工程师 释放云基建能力:链接任何云 及自建资源(容器、主机、车 使用门槛极低 现存做法大多以「单点工具 + 写脚本」或运管类平台为主, Zadig 则是面向开发者视角,中立,云原生一体化价值链平台。 与现存 DevOps 方案对比: 现存方案 典型代表 方案特点分析 Zadig 优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 运行效率低,管理维护成本高 方案局限性大,安全性风险高 无法支持敏捷交付模式 支持从需求到发布全流程敏捷交付。尤其面向
    0 码力 | 52 页 | 22.95 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
陈东利用Rust重塑移动应用开发230618陈明煜2023RustChinaConfZadig面向开发者原生DevOps平台C++高性性能高性能并行编程优化课件02游人RustCCAtlasGraph05061207产品使用手册使用手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩