积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(16)C++(11)Rust(5)系统运维(2)DevOps(2)数据库(1)MySQL(1)

语言

全部中文(简体)(18)中文(简体)(1)

格式

全部PPT文档 PPT(19)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 19 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    / 灰度上线 xN 监控 / 告警 xN 版本归档 xN 交付追踪 xN 数据度量 xN 服务、工单管理 事件、缺陷管理 想 法 用 户 运行阶段 需求阶段 研发阶段 现代软件交付挑战:开发 5 分钟,上线 2 小时 服务一:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务二:设计 重视开发者体验,工程师不再做脏活累活 传统 DevOps 体系 Zadig 云原生 DevOps 平台 高人效 低人效 低人效 / 低质量 / 低效率 / 高成 本: 人淹没在系统的海洋里,无数平台手工切换 高人效 / 高质量 / 高效率 / 低成 本: 人在系统之外 / 上,复杂性下沉到单一平台 希望 工程师不再花时间在开发写代码之外的脏活累活,比如服务部署、找环境,服务编排等 个月核心重构 65% 功能实现开源 支撑开源社区开发者环境 易 用 性 增 强 接入:安装 10 分钟以内,成功率达 90% 集成环境:支持开发者 Remote debug 工作流:效率和性能、开发者体验提升 贡献者流程建立 开 放 社 区 搭 建 2021 年 5 月 2021 年 7 月 2021 年 9 月 2021 年 11 月 2021 年 12 月 1 个月功能改造
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 Zadig 产品使用手册

    台 是 国 内 落 地 程 度 最 深 、 使 用 范 围 最 广 ( 近 千 家 企 业 ) 的 云 原 生 D e v O p s 平 台 。 领先企业抢先实践 Zadig Zadig 研发数字化转型方案正成为产业数字化战略的核心环节 Zadig 设计思路:通过「平台工程」解决流程挑战,通过「技术升级」提升组织效能 01 04 02 03 工程化协同:“人、技术、流 程、工具” 则是面向开发者视角,中立,云原生一体化价值链平台。 与现存 DevOps 方案对比: 现存方案 典型代表 方案特点分析 Zadig 优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 运行效率低,管理维护成本高 方案局限性大,安全性风险高 无法支持敏捷交付模式 支持从需求到发布全流程敏捷交付。尤其面向 多服务并行部署发布,云原生构建环境和运行 环境,基础设施对接及企业级 SSO/ 权限管理 布的全路径。 测试 发布 洞察 一堆复杂脚本、维护成本极高 员工手工操作费时费力易出错 手动更新服务、手动打包、交付 付效率低下、占据大量研发时间 、研发利用率极低 环境不透明、测试效率低下、测 试有效性低、大量手工、价值难 以体现 上下游烟囱式、协作效率低、团 队花大量时间在碎片化沟通和流 程制定上、各方能力受限、无法 快速响应市场需求 层级越高、对产研状态越模糊 管理低效、延误战机
    0 码力 | 52 页 | 22.95 MB | 1 年前
    3
  • ppt文档 基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺

    运维监控等场景设计并优化,具有极强的弹性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等 系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个极简的时序数据处理平台。 采用关系型数据库模型  需要建库、建表,  为提升写入和查询效率,要求一个数据采集点一张表  为实现多表聚合,引入超级表概念  子表通过超级表创建,带有标签,通过标签实现多表 高效聚合
    0 码力 | 29 页 | 2.26 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    晶体管的密度的确仍在指数增长,但处理器主 频却开始停止增长了,甚至有所下降。 • 很长时间之前我们就可以达到 2GHz ( 2001 年 8 月),根据 2003 年的趋势,在 2005 年 初我们就应该研发出 10GHz 的芯片。 • 可为何直到今天也生产不出 10GHz 的芯片? • 结论:狭义的摩尔定律没有失效。但晶体管数 量的增加,不再用于继续提升单核频率,转而 用于增加核心数量。单核性能不再指数增长! push_back 等一起用,否则需要用读写锁 保护。 不建议通过索引随机访问 • 因为 tbb::concurrent_vector 内存不连续 的特点,通过索引访问,比通过迭代器访 问的效率低一些。 • 因此不推荐像 a[i] 这样通过索引随机访问 其中的元素, *(it + i) 这样需要迭代器跨步 访问的也不推荐。 推荐通过迭代器顺序访问 • 最好的方式是用 begin()
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    2023-06-18 沈游人 数据库与大数据专场 海致简介—企业级知识图谱开创者 专业顶尖技术团队支撑 超 700 人团队,其中 80% 为技术人员,创始团队在完成全球第一个中文知 识图谱网站研发后,探索知识图谱技术在企业领域的应用。 2021 年,海致院 士专家工作站成立,站内清华大学计算机博士生占比达 90% 以上。 企业级数据解决方案专家 为建行、工行、交行、招行、上交所、深交所、中国人寿等 及长期服务。 海致专注为政府、金融、能源等客户提供大数据处理、分析、挖掘服务,在互 联网技术基础上,打造专业、易用的企业级大数据实战应用产品及解决方案。 北京中关村总部 武汉运维中心 深圳研发中心 上海应用中心 专注于数据智能技术赋能中国数字经济发展 海致高性能图计算院士专家工作站 郑纬民 - 海致科技首席科学家 中国工程院院士、清华大学计算机科学与技术系教 授、中国计算机学会前理事长,中国计算机系统结构 定国际影响的优秀成果, AtlasGraph 的获奖证明了其技术领先性、创新性、 重要性,在自主可控浪潮下,实现了对国外产品的有效替代,防止高新技术领 域“卡脖子”现象的发生。 海致科技集团、海致星图联合清华大学研发的“ AtlasGraph 大规模图数据分析平 台”荣获中国计算机学会( CCF : China Computer Federation )“ 2021 年 CCF 科 学技术奖科技进步卓越奖”。
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 Rust与算法 - 谢波

    总结及学习资源 背景介绍 • 个人信息 • 写作动机 • 可参考点 • 为什么 背景介绍 # 个人职业 # 与 Rust 结缘 # 前 GPT 时代作品 个人信息 结算及大数据系统研发工程师 疫情下的明智选择 / 个人项目实践 学习中总结探索 2015 年发布,很多人近几年才知道 Rust , Rust 中国 大会也才第三届,期待 Rust 中国大会第十届 Rust 处于起步阶段
    0 码力 | 28 页 | 3.52 MB | 1 年前
    3
  • ppt文档 CeresDB Rust 生产实践 任春韶

    2019.02 ~ 2020.11 2021.9  自研存储引擎  1.0.0 版本发布  查询性能优化  Prometheus 协议支持  基于 InfluxDB 单机引擎研发 分布式方案  OpenTSDB 协议  内存时序数据库  存储计算分离架构  分级存储  永久代  CeresDB 开源 2022.6 2023.3  开源版本 CeresDB
    0 码力 | 22 页 | 6.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    可见数据量较小时,实际带宽甚至超过了 理论带宽极限 42672 MB/s ! • 而数据量足够大时, 才回落到正常的带宽 。 • 这是为什么? CPU 内部的高速缓存 • 原来 CPU 的厂商早就意识到了内存延迟高,读写效率低 下的问题。因此他们在 CPU 内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 数据,那就需要向主内存发送写入请求,等他写入成功, 才能安全移除这个条目。 • 如有多级缓存,则一级缓存失效后会丢给二级缓存。 连续访问与跨步访问 • 如果访问数组时,按一定的间距跨步访问,则效率如何? • 从 1 到 16 都是一样快的, 32 开始才按 2 的倍率变慢,为什么? • 因为 CPU 和内存之间隔着缓存,而缓存和内存之间传输数据的最小 单位是缓存行( 64 字节)。 16 通常的情况都是 pos+=vel ,也就是 pos 是读写, vel 是只读,那这时候就 用 SOA 比较好,省内存带宽。 • 不过“ pos 的 xyz 分量用 AOS” 这个结论,是单从内存访问效率来看的,需 要 SIMD 矢量化的话可能还是要 SOA 或 AOSOA ,比如 hw04 那种的。而 “ pos 和 vel 应该用 SOA 分开存”是没问题的。 • 而且 SOA 在遇到存储不是
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    表结构设计原则 选择字段的一般原则是保小不保大,能用占用字节 少的字段就不用大字段。比如,主键,强烈建议用 int 整型 . 不用 bigint ,为什么 ? 省空间啊。空间是什么 ? 空间就是效率!按 4 个字节和按 32 个字节定位一条记 录,谁快谁慢太明显了。涉及几个表做 join 时, 效果 就更明显了。更小的字段类型占用的内存就更少,占用 的磁盘空间和磁盘 I/O 也会更少,而且还会占用更少的 DISTINCT DISTINCT 、 、 OR OR 、 、 IN IN 等语句的使用 等语句的使用 , , 避免使用联表查询和子查询,因为将使执行效率大大下降 避免使用联表查询和子查询,因为将使执行效率大大下降  能够使用索引的字段尽量进行有效的合理排列,如果使用了 能够使用索引的字段尽量进行有效的合理排列,如果使用了 联合索引,请注意提取字段的前后顺序 SELECT COUNT(*) FROM Tbl 在 在 InnoDB InnoDB 中将会扫描全 中将会扫描全 表 表 MyISAM MyISAM 中则效率很高 中则效率很高 MySQL MySQL 技巧分享 技巧分享 Explain Explain 使用 使用  语法: 语法: EXPLAIN SELECT EXPLAIN SELECT select_options
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    针。比如右边这样: 更智能的指针: shared_ptr • 使用起来很困难的原因,在于 unique_ptr 解决重复释放 的方式是禁止拷贝,这样虽然有效率高的优势,但导致使 用困难,容易犯错等。 • 相比之下, 牺牲效率换来自由度的 shared_ptr 则允许 拷贝,他解决重复释放的方式是通过引用计数: 1. 当一个 shared_ptr 初始化时,将计数器设为 1 。 2 可以适当使用减轻初学者的压力,因为他的行为和 Python 等 GC 语言的引用计数机制很像。但从长远 来看是不行的,因为: 1. shared_ptr 需要维护一个 atomic 的引用计数器, 效率低,需要额外的一块管理内存,访问实际对象 需要二级指针,而且 deleter 使用了类型擦除技术 。 2. 全部用 shared_ptr ,可能出现循环引用之类的问题 ,导致内存泄露,依然需要使用不影响计数的原始
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
Zadig面向开发开发者原生DevOps平台产品使用手册使用手册霍琳2023RustChinaConfRustC++高性性能高性能并行编程优化课件06游人RustCCAtlasGraph谢波大会算法Shieber任春韶ceresdbrust生产实践生产实践07MySQL02
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩