 C++高性能并行编程与优化 -  课件 - 17 由浅入深学习 map 容器由浅入深学习 map 容器 by 彭于斌( @archibate ) 我负责监督你鞋习 ! 我负责监督你鞋习 ! 本期看点: 用方括号 [ ] 取出 map 元素居然是错误的! 能不能在遍历的同时删除元素?安全吗? emplace , emplace_hint , try_emplace 的区别? 课程安排 1. vector 容器初体验 & 迭代器入门 (BV1qF411T7sd) 2 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 10. C++ 异常处理机制的前世今生 我们都要认真鞋习哦 我们都要认真鞋习哦 第一章:读取与写入 我负责监督你鞋习 ! 我负责监督你鞋习 ! map 查找元素的两个接口 • map 提供了两个查找元素的接口,一曰 [] ,二曰 at 。 • 那么他们两个又有什么区别呢?很多新手都分不清他俩,可能只认识 [] 。 m.insert({key, val}) 判断是否存在,用 m.count(key) 若存在则删除,用 m.erase(key) 第四章:迭代与遍历 物理格式 逻辑格式 面壁者罗辑监督你鞋习 ! 面壁者罗辑监督你鞋习 ! map 的元素类型是…… • set C++高性能并行编程与优化 -  课件 - 17 由浅入深学习 map 容器由浅入深学习 map 容器 by 彭于斌( @archibate ) 我负责监督你鞋习 ! 我负责监督你鞋习 ! 本期看点: 用方括号 [ ] 取出 map 元素居然是错误的! 能不能在遍历的同时删除元素?安全吗? emplace , emplace_hint , try_emplace 的区别? 课程安排 1. vector 容器初体验 & 迭代器入门 (BV1qF411T7sd) 2 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 10. C++ 异常处理机制的前世今生 我们都要认真鞋习哦 我们都要认真鞋习哦 第一章:读取与写入 我负责监督你鞋习 ! 我负责监督你鞋习 ! map 查找元素的两个接口 • map 提供了两个查找元素的接口,一曰 [] ,二曰 at 。 • 那么他们两个又有什么区别呢?很多新手都分不清他俩,可能只认识 [] 。 m.insert({key, val}) 判断是否存在,用 m.count(key) 若存在则删除,用 m.erase(key) 第四章:迭代与遍历 物理格式 逻辑格式 面壁者罗辑监督你鞋习 ! 面壁者罗辑监督你鞋习 ! map 的元素类型是…… • set- ::value_type 是 V 。 • map - ::value_type 是 pair - 。 0 码力 | 90 页 | 8.76 MB | 1 年前3
 新一代分布式高性能图数据库的构建 - 沈游人将高维的图信息映射到低维向量中 • 通过图嵌入将客户关系表示为低维向量,可以结合其 他客户行为特征进行机器学习训练 图卷积神经网络 • 对图结构数据进行卷积计算 • 通过已有的企业数据,通过 GCN 进行半监督学习和分 类,预测企业的违约概率 传统的关系型数据库的存储方式丢失了事物之间的关系信息 Relational Table Real World Multi-Context is Preserved0 码力 | 38 页 | 24.68 MB | 1 年前3 新一代分布式高性能图数据库的构建 - 沈游人将高维的图信息映射到低维向量中 • 通过图嵌入将客户关系表示为低维向量,可以结合其 他客户行为特征进行机器学习训练 图卷积神经网络 • 对图结构数据进行卷积计算 • 通过已有的企业数据,通过 GCN 进行半监督学习和分 类,预测企业的违约概率 传统的关系型数据库的存储方式丢失了事物之间的关系信息 Relational Table Real World Multi-Context is Preserved0 码力 | 38 页 | 24.68 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 08 CUDA 开启的 GPU 编程malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 • 英伟达 GTX900 及以上显卡。 • CUDA 11 及以上。 • CMake 3.18 及以上。 我负责监督你学习 第 0 章: Hello, world! CMake 中启用 CUDA 支持 • 最新版的 CMake ( 3.18 以上),只需在 LANGUAGES 后面加上 CUDA 即可启用0 码力 | 142 页 | 13.52 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 08 CUDA 开启的 GPU 编程malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 • 英伟达 GTX900 及以上显卡。 • CUDA 11 及以上。 • CMake 3.18 及以上。 我负责监督你学习 第 0 章: Hello, world! CMake 中启用 CUDA 支持 • 最新版的 CMake ( 3.18 以上),只需在 LANGUAGES 后面加上 CUDA 即可启用0 码力 | 142 页 | 13.52 MB | 1 年前3
共 3 条
- 1













