 JVM 内存模型JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method0 码力 | 1 页 | 48.42 KB | 1 年前3 JVM 内存模型JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method0 码力 | 1 页 | 48.42 KB | 1 年前3
 RustBelt - Rust 的形式化语义模型第三届中国 Rust 开发者大会 王俊吉 RustBelt - Rust 的形式化语义模型 Outline Background • RustBelt Project • Rust Types Overview Rust Semantics • Type System • The own Predict • Exclusive Ownership & Mutable Borrow0 码力 | 21 页 | 2.63 MB | 1 年前3 RustBelt - Rust 的形式化语义模型第三届中国 Rust 开发者大会 王俊吉 RustBelt - Rust 的形式化语义模型 Outline Background • RustBelt Project • Rust Types Overview Rust Semantics • Type System • The own Predict • Exclusive Ownership & Mutable Borrow0 码力 | 21 页 | 2.63 MB | 1 年前3
 基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺),专为物联网、工业互联网、金融、 IT 运维监控等场景设计并优化,具有极强的弹性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等 系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个极简的时序数据处理平台。 采用关系型数据库模型  需要建库、建表,  为提升写入和查询效率,要求一个数据采集点一张表  为实现多表聚合,引入超级表概念  子表通过超级表创建,带有标签,通过标签实现多表 部 开 源 www.github.com/taosdata/TDengine 全球 50 多个国家安装实例超 270k | GitHub 全球趋势排行榜多次排名第一 TDengine - 数据模型 1. 设备 ID 及关联属性( Tags ) 2. 时间戳 3. 结构化采集量 STable 超级表 Table 子表 CREATE STABLE `meters` ( `ts` TIMESTAMP `location` VARCHAR(24)) TDengine - 业务模式 开源版 企业版 云服务版 核心功能开源 • SQL 支持 • 无模式写入 • 缓存 • 流计算 • 数据订阅 • 集群、高可用 高可靠、线性扩展 + 专业技术服务 • 边云数据复制 • 跨云 / 异地数据复制 • 增量备份 • 多级存储 • 工业数据接入 全托管时序数据 管理云服务平台 •0 码力 | 29 页 | 2.26 MB | 1 年前3 基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺),专为物联网、工业互联网、金融、 IT 运维监控等场景设计并优化,具有极强的弹性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等 系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个极简的时序数据处理平台。 采用关系型数据库模型  需要建库、建表,  为提升写入和查询效率,要求一个数据采集点一张表  为实现多表聚合,引入超级表概念  子表通过超级表创建,带有标签,通过标签实现多表 部 开 源 www.github.com/taosdata/TDengine 全球 50 多个国家安装实例超 270k | GitHub 全球趋势排行榜多次排名第一 TDengine - 数据模型 1. 设备 ID 及关联属性( Tags ) 2. 时间戳 3. 结构化采集量 STable 超级表 Table 子表 CREATE STABLE `meters` ( `ts` TIMESTAMP `location` VARCHAR(24)) TDengine - 业务模式 开源版 企业版 云服务版 核心功能开源 • SQL 支持 • 无模式写入 • 缓存 • 流计算 • 数据订阅 • 集群、高可用 高可靠、线性扩展 + 专业技术服务 • 边云数据复制 • 跨云 / 异地数据复制 • 增量备份 • 多级存储 • 工业数据接入 全托管时序数据 管理云服务平台 •0 码力 | 29 页 | 2.26 MB | 1 年前3
 新一代分布式高性能图数据库的构建 - 沈游人储、索引及复制难题,提出了基于图缩减的高效分析方法,并孵化出了一个大 规模图数据分析平台 AtlasGraph 。 5 获得 2022 年中国电子学会科学技术奖科技进步一等奖 中国电子学会发布的《 2022 中国电子学会科学技术奖公告》,海 致星图与北京邮电大学、蚂蚁科技集团有限公司、中移动信息技术 有限公司联合研发的“大规模复杂异质图数据智能分析技术与规模化 应用”项目,斩获“科 领 先水平。” 以终为始,以行为知,这一项目从图计算所面临的挑战出发,解决了大规模图数据所产生 的建模能力不足、结构知识难用、巨量数据难算等技术挑战,实现了大规模复杂异质图数 据的表示学习模型、语义推荐和风险管理关键技术,构建了完整的兼具理论指导与应用检 验的大规模图数据智能分析系统与平台,满足了大数据时代从复杂异质图数据中进行知识 发现的重要需求。最终获得国内外授权发明专利 43 项, 链接预测 连接强度 一致行动人 同事关系 实际控制人 可能认识的人 上下游 同爱好的人 亲属关系 …  人与人、企业与企业、企业与人之间的 复杂、潜在关系推导和挖掘  为已有的分析模型增加“关系特征”维 度 客户贡献度 客户信用分 客户忠诚度 客户欺诈分 客户风险度 违约概率 客户资质 … 集团关系 社群关系 欺诈团伙 担保关系 资金圈 / 链 …  设别出带有某种共同特征0 码力 | 38 页 | 24.68 MB | 1 年前3 新一代分布式高性能图数据库的构建 - 沈游人储、索引及复制难题,提出了基于图缩减的高效分析方法,并孵化出了一个大 规模图数据分析平台 AtlasGraph 。 5 获得 2022 年中国电子学会科学技术奖科技进步一等奖 中国电子学会发布的《 2022 中国电子学会科学技术奖公告》,海 致星图与北京邮电大学、蚂蚁科技集团有限公司、中移动信息技术 有限公司联合研发的“大规模复杂异质图数据智能分析技术与规模化 应用”项目,斩获“科 领 先水平。” 以终为始,以行为知,这一项目从图计算所面临的挑战出发,解决了大规模图数据所产生 的建模能力不足、结构知识难用、巨量数据难算等技术挑战,实现了大规模复杂异质图数 据的表示学习模型、语义推荐和风险管理关键技术,构建了完整的兼具理论指导与应用检 验的大规模图数据智能分析系统与平台,满足了大数据时代从复杂异质图数据中进行知识 发现的重要需求。最终获得国内外授权发明专利 43 项, 链接预测 连接强度 一致行动人 同事关系 实际控制人 可能认识的人 上下游 同爱好的人 亲属关系 …  人与人、企业与企业、企业与人之间的 复杂、潜在关系推导和挖掘  为已有的分析模型增加“关系特征”维 度 客户贡献度 客户信用分 客户忠诚度 客户欺诈分 客户风险度 违约概率 客户资质 … 集团关系 社群关系 欺诈团伙 担保关系 资金圈 / 链 …  设别出带有某种共同特征0 码力 | 38 页 | 24.68 MB | 1 年前3
 夏歌-使用Rust构建LLM应用serverless 平台 • 上传 Rust function ,平台负责将 Rust 编译成 Wasm ,并运行在 WasmEdge 安全容 器中 • 平台封装了一些常用 LLM 和 SaaS 的 API ,并发布成了 crate ,比如 ChatGPT 、 telegram 、 GitHub 、 Discord 、向量数据库比如 qdront 。 • 整个 serverless 平台是为 Rust 和 WebAssembly 收到 规定好的 Slash 开头的 telegram command ,就预启动不同的 Prompt "0.1.0" 基于 ChatGPT 的 Telegram 机器人 当收到消息的时候,就按照预 设的 system_prompt 使用 GPT3.5 调用 OpenAI , 并把结果返回。 "0.1.0" 基于 ChatGPT 的 Telegram 机器人 在 ocr0 码力 | 36 页 | 38.31 MB | 1 年前3 夏歌-使用Rust构建LLM应用serverless 平台 • 上传 Rust function ,平台负责将 Rust 编译成 Wasm ,并运行在 WasmEdge 安全容 器中 • 平台封装了一些常用 LLM 和 SaaS 的 API ,并发布成了 crate ,比如 ChatGPT 、 telegram 、 GitHub 、 Discord 、向量数据库比如 qdront 。 • 整个 serverless 平台是为 Rust 和 WebAssembly 收到 规定好的 Slash 开头的 telegram command ,就预启动不同的 Prompt "0.1.0" 基于 ChatGPT 的 Telegram 机器人 当收到消息的时候,就按照预 设的 system_prompt 使用 GPT3.5 调用 OpenAI , 并把结果返回。 "0.1.0" 基于 ChatGPT 的 Telegram 机器人 在 ocr0 码力 | 36 页 | 38.31 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 08 CUDA 开启的 GPU 编程kernel 好像没有执行过一样,只有 CPU 上的代码被执行了。 指定多个版本号 • 可以指定多个版本号,之间用分号分割。 • 运行时可以自动选择最适合当前显卡的版 本号,通常用于打包发布的时候。 • 不过这样会导致 GPU 编译器重复编译很 多遍,每次针对不同的架构,所以编译会 变得非常慢,生成的可执行文件也会变大 。 • 通常在自己的电脑上用时,同学们只要根 据自己显卡的指定一个版本号即可。 • 不过看了一下生成的 PTX 汇编,好像也没有优化掉的样子 ?难道是 CUBIN 那一阶段做的?还是驱动做的?还在向王 鑫磊求教中…… 第 9 章:共享内存进阶 GPU 的内存模型 GPU 的内存模型 全局内存:在 main() 中通过 cudaMalloc 分配的内存 共享内存:每个板块都有一个,通过 __shared__ 声明 寄存器:存储着每个线程的局部变量 板块中线程数量过多:寄存器打翻(0 码力 | 142 页 | 13.52 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 08 CUDA 开启的 GPU 编程kernel 好像没有执行过一样,只有 CPU 上的代码被执行了。 指定多个版本号 • 可以指定多个版本号,之间用分号分割。 • 运行时可以自动选择最适合当前显卡的版 本号,通常用于打包发布的时候。 • 不过这样会导致 GPU 编译器重复编译很 多遍,每次针对不同的架构,所以编译会 变得非常慢,生成的可执行文件也会变大 。 • 通常在自己的电脑上用时,同学们只要根 据自己显卡的指定一个版本号即可。 • 不过看了一下生成的 PTX 汇编,好像也没有优化掉的样子 ?难道是 CUBIN 那一阶段做的?还是驱动做的?还在向王 鑫磊求教中…… 第 9 章:共享内存进阶 GPU 的内存模型 GPU 的内存模型 全局内存:在 main() 中通过 cudaMalloc 分配的内存 共享内存:每个板块都有一个,通过 __shared__ 声明 寄存器:存储着每个线程的局部变量 板块中线程数量过多:寄存器打翻(0 码力 | 142 页 | 13.52 MB | 1 年前3
 Zadig 产品使用手册优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 运行效率低,管理维护成本高 方案局限性大,安全性风险高 无法支持敏捷交付模式 支持从需求到发布全流程敏捷交付。尤其面向 多服务并行部署发布,云原生构建环境和运行 环境,基础设施对接及企业级 SSO/ 权限管理 等 运维管理类平台 蓝鲸 Rainbond KubeSphere KubeVela 面向资源管理的运维工具集 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 开发 Zadig 核心特性: 运维 真正意义的持续交付:以工程师体验为核心,价值交付为理念,完成需求到发布的全路径。 测试 发布 洞察 一堆复杂脚本、维护成本极高 员工手工操作费时费力易出错 手动更新服务、手动打包、交付 付效率低下、占据大量研发时间 层级越高、对产研状态越模糊 管理低效、延误战机 少量配置、快速拉起环境、稳定 性有保障、减少 90% 手工操作、 赋能开发、员工成就感高 碎片化:手工协作 + 复杂工具链 工程化:一个平台 一键发布 工作流、环境配置自动更新、高 效调试、消除手工操作、精准快 速迭代、研发生产力 / 幸福感提 升 自助运行、系统化管理、自动化 程度高、测试有效性提升、质量 有保障、横向赋能、技能提升 随时调用工程基线提供的能力、0 码力 | 52 页 | 22.95 MB | 1 年前3 Zadig 产品使用手册优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 运行效率低,管理维护成本高 方案局限性大,安全性风险高 无法支持敏捷交付模式 支持从需求到发布全流程敏捷交付。尤其面向 多服务并行部署发布,云原生构建环境和运行 环境,基础设施对接及企业级 SSO/ 权限管理 等 运维管理类平台 蓝鲸 Rainbond KubeSphere KubeVela 面向资源管理的运维工具集 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 开发 Zadig 核心特性: 运维 真正意义的持续交付:以工程师体验为核心,价值交付为理念,完成需求到发布的全路径。 测试 发布 洞察 一堆复杂脚本、维护成本极高 员工手工操作费时费力易出错 手动更新服务、手动打包、交付 付效率低下、占据大量研发时间 层级越高、对产研状态越模糊 管理低效、延误战机 少量配置、快速拉起环境、稳定 性有保障、减少 90% 手工操作、 赋能开发、员工成就感高 碎片化:手工协作 + 复杂工具链 工程化:一个平台 一键发布 工作流、环境配置自动更新、高 效调试、消除手工操作、精准快 速迭代、研发生产力 / 幸福感提 升 自助运行、系统化管理、自动化 程度高、测试有效性提升、质量 有保障、横向赋能、技能提升 随时调用工程基线提供的能力、0 码力 | 52 页 | 22.95 MB | 1 年前3
 Zadig 面向开发者的云原生 DevOps 平台代码编写 | 构建 | 测试 | 部署 | 发布 服务二:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务三:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 以前:面向代码片段的串行交付 现在:面向多个服务编排的产品级自动化并行交付 构建 | 部署 | 测试 | 发布 服务二: 服务定义 | 构建 | 部署 | 测试 | 发布 服务三: 服务定义 | 构建 | 部署 | 测试 | 发布 代码一: 代码编写 | 构建 | 部署 | 测试 | 发布 代码二: 代码编写 | 构建 | 部署 | 测试 | 发布 代码三: 代码编写 | 构建 | 部署 | 测试 | 发布 特点: ● 重复流程自动化 ● 边开发、边验证 ● 服务全生命周期而非只关注代码 ● 每天多次提交提早验证 Zadig 采用「云原生产品级交付」设计理念 数字化产研协同 • 环境 -0 码力 | 59 页 | 81.43 MB | 1 年前3 Zadig 面向开发者的云原生 DevOps 平台代码编写 | 构建 | 测试 | 部署 | 发布 服务二:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务三:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 以前:面向代码片段的串行交付 现在:面向多个服务编排的产品级自动化并行交付 构建 | 部署 | 测试 | 发布 服务二: 服务定义 | 构建 | 部署 | 测试 | 发布 服务三: 服务定义 | 构建 | 部署 | 测试 | 发布 代码一: 代码编写 | 构建 | 部署 | 测试 | 发布 代码二: 代码编写 | 构建 | 部署 | 测试 | 发布 代码三: 代码编写 | 构建 | 部署 | 测试 | 发布 特点: ● 重复流程自动化 ● 边开发、边验证 ● 服务全生命周期而非只关注代码 ● 每天多次提交提早验证 Zadig 采用「云原生产品级交付」设计理念 数字化产研协同 • 环境 -0 码力 | 59 页 | 81.43 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南(会安装到 /opt/openvdb-8.0/lib/libopenvdb.so ) • cmake -B build -DCMAKE_BUILD_TYPE=Release • ↑ 设置构建模式为发布模式(开启全部优化) • cmake -B build ← 第二次配置时没有 -D 参数,但是之前的 -D 设置的变量都会被保留 • (此时缓存里仍有你之前定义的 CMAKE_BUILD_TYPE CMAKE_BUILD_TYPE 构建的类型,调试模式还是发布模式 • CMAKE_BUILD_TYPE 是 CMake 中一个特殊的变量,用于控制构建类型,他的值可以 是: • Debug 调试模式,完全不优化,生成调试信息,方便调试程序 • Release 发布模式,优化程度最高,性能最佳,但是编译比 Debug 慢 • MinSizeRel 最小体积发布,生成的文件比 Release 更小,不完全优化,减少二进制体积 更小,不完全优化,减少二进制体积 • RelWithDebInfo 带调试信息发布,生成的文件比 Release 更大,因为带有调试的符号信 息 • 默认情况下 CMAKE_BUILD_TYPE 为空字符串,这时相当于 Debug 。 各种构建模式在编译器选项上的区别 • 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方0 码力 | 166 页 | 6.54 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南(会安装到 /opt/openvdb-8.0/lib/libopenvdb.so ) • cmake -B build -DCMAKE_BUILD_TYPE=Release • ↑ 设置构建模式为发布模式(开启全部优化) • cmake -B build ← 第二次配置时没有 -D 参数,但是之前的 -D 设置的变量都会被保留 • (此时缓存里仍有你之前定义的 CMAKE_BUILD_TYPE CMAKE_BUILD_TYPE 构建的类型,调试模式还是发布模式 • CMAKE_BUILD_TYPE 是 CMake 中一个特殊的变量,用于控制构建类型,他的值可以 是: • Debug 调试模式,完全不优化,生成调试信息,方便调试程序 • Release 发布模式,优化程度最高,性能最佳,但是编译比 Debug 慢 • MinSizeRel 最小体积发布,生成的文件比 Release 更小,不完全优化,减少二进制体积 更小,不完全优化,减少二进制体积 • RelWithDebInfo 带调试信息发布,生成的文件比 Release 更大,因为带有调试的符号信 息 • 默认情况下 CMAKE_BUILD_TYPE 为空字符串,这时相当于 Debug 。 各种构建模式在编译器选项上的区别 • 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方0 码力 | 166 页 | 6.54 MB | 1 年前3
 GPU Resource Management On JDOSManagement On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 ,使用 gpu 的 Serving 服务 提供统一便捷的 Serving 服务,只需用户指定模型,即可提供 grpc 和 rest 服务,同时使用 GPU 复用 +HPA 提高 GPU 利用率 创建 Serving 与训练集成 • 用户只需要简单选择机房和 镜像填写模型名即可完成 Serving 服务创建 自有模型 • 用户只需要填写模型地址即 可 GPU 监控 • 容器监控服务,自适 应 GPU 容器,可根据0 码力 | 11 页 | 13.40 MB | 1 年前3 GPU Resource Management On JDOSManagement On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 ,使用 gpu 的 Serving 服务 提供统一便捷的 Serving 服务,只需用户指定模型,即可提供 grpc 和 rest 服务,同时使用 GPU 复用 +HPA 提高 GPU 利用率 创建 Serving 与训练集成 • 用户只需要简单选择机房和 镜像填写模型名即可完成 Serving 服务创建 自有模型 • 用户只需要填写模型地址即 可 GPU 监控 • 容器监控服务,自适 应 GPU 容器,可根据0 码力 | 11 页 | 13.40 MB | 1 年前3
共 18 条
- 1
- 2













