积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(28)C++(19)Rust(9)系统运维(3)DevOps(2)数据库(1)MySQL(1)云计算&大数据(1)Kubernetes(1)存储(1)

语言

全部中文(简体)(31)中文(简体)(2)

格式

全部PPT文档 PPT(33)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 33 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • MySQL
  • 云计算&大数据
  • Kubernetes
  • 存储
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN 服务全生命周期而非只关注代码 ● 每天多次提交提早验证 Zadig 采用「云原生产品级交付」设计理念 数字化产研协同 • 环境 - 统一开发者协作平面 • 工作流 - 统一交付变更通道 • 异构支持 - 统一产研运管理平面 重视开发者体验,工程师不再做脏活累活 传统 DevOps 体系 Zadig 云原生 DevOps 平台 高人效 低人效 低人效 / 低质量 / 低效率 / 开 源 基 本 能 力 开 源 1.5 个月核心重构 65% 功能实现开源 支撑开源社区开发者环境 易 用 性 增 强 接入:安装 10 分钟以内,成功率达 90% 集成环境:支持开发者 Remote debug 工作流:效率和性能、开发者体验提升 贡献者流程建立 开 放 社 区 搭 建 2021 年 5 月 2021 年 7 月 2021 年 9 月 2021
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    图数据中进行知识 发现的重要需求。最终获得国内外授权发明专利 43 项, CCF -A 类论文 51 篇,获得 2 次国际竞赛冠军,参与了 2 项图计算相关标准制定。 AtlasGraph 架构及实现 图技术简介 Takeway “ 世界是复杂关系的总和”—— 一张典型的知识图谱 电话 / 同通讯录 / 绑定同账户 /... Mac 地址 /IP 地址 /wifi... 亲属 路径算法 • … 图深度学习 • 图嵌入 • 图卷积 • 图注意力网络 • 图自编码器 图查询及其应用场景 图查询 • 使用图数据库的查询语言进行点边的关联查询,可以快速完成传统数据库难以完成的 多度点边关 联 当前图的典型应用场景 路径识别 群体挖掘 节点识别 相似节点 链接预测 连接强度 一致行动人 同事关系 实际控制人 可能认识的人 上下游 同爱好的人 亲属关系 …  近客户需求) • 现有开源产品无法满足要求(受限于基础架构设计,优化性能有限) 新一代分布式图数据库需具备的特性 特性 信 雅 达 • 高可用 • 一致性(事 务) • 高性能 • 低资源消耗 • 易用 • 功能丰富 AtlasGraph 关键特性 云原生 Cloud-Native Graph Database 支持弹性伸缩,有 效利用硬件资源,高可用,高 可靠,故障自愈,低成本运维
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    英伟达 GTX900 及以上显卡。 • CUDA 11 及以上。 • CMake 3.18 及以上。 我负责监督你学习 第 0 章: Hello, world! CMake 中启用 CUDA 支持 • 最新版的 CMake ( 3.18 以上),只需在 LANGUAGES 后面加上 CUDA 即可启用 。 • 然后在 add_executable 里直接加你 的 .cu 文件,和 __syncthreads 之类的 GPU 特有的函数,因此也不能 完全替代 __host__ 和 __device__ 。 通过 #ifdef 指令针对 CPU 和 GPU 生成不同的代码 • CUDA 编译器具有多段编译的特点。 • 一段代码他会先送到 CPU 上的编译器(通常是系统自带的编译 器比如 gcc 和 msvc )生成 CPU 部分的指令码。然后送到真 正的 GPU 编译器生成 GPU 指令码。最后再链接成同一个文件 ,从而实现一个函数针对 GPU 和 CPU 生成两份源码级不同的 代码。 __CUDA_ARCH__ 是个版本号 • 其实 __CUDA_ARCH__ 是一个整数,表 示当前编译所针对的 GPU 的架构版本号 是多少。这里是 520 表示版本号是 5.2.0 ,最后一位始终是 0 不用管,我们 通常简称他的版本号为 52 就行了。 • 这个版本号是编译时指定的版本,不是运 行时检测到的版本。编译器默认就是最老
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事  MySQL MySQL 基本介绍 基本介绍  MySQL MySQL 优化方式 优化方式  MySQL MySQL 技巧分享 技巧分享  Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 少碎片、支持大文件、能够进行索引压缩 少碎片、支持大文件、能够进行索引压缩 • 二进制层次的文件可以移植 二进制层次的文件可以移植 (Linux (Linux   Windows) Windows) • 访问速度飞快,是所有 访问速度飞快,是所有 MySQL MySQL 文件引擎中速度最快的 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 lock ,性能稍差,更适合读取多的操作 ,性能稍差,更适合读取多的操作 InnoDB InnoDB 特点 特点 •使用 使用 Table Space Table Space 的方式来进行数据存储 的方式来进行数据存储 (ibdata1, ib_logfile0) (ibdata1, ib_logfile0) • 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 •
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针

    刚刚说的让 10000000 表示 -1 , 11111111 表示 -128 的方法就叫做反码表示法。 • 但是这样还有一个问题,那就是硬件电路上,需要完全重新设计,对符号位做一些特殊判 断,才能支持有符号整数的加减法,因此如今的计算机都采用了一种更聪明的表示法: • 他们让 11111111 表示 -1 , 10000000 表示 -128 ,也就是大名鼎鼎的补码表示法。 • 这样做的目的是,利用加法器的“溢出”机制,例如 64 位。 • 实际上地址的高 16 位始终和第 48 位一致(符号扩展),也就是虚拟地址空间只有 48 位。 • 而经过 MMU 映射后实际给内存的地址只有 39 位,因此如今的 x64 架构实际上只能访 问 512GB 内存,如果插了超过这个大小的内存条他也不会认出来。 • 此外, 16 位计算机实际上能通过额外的段寄存器访问到 20 位的内存地址( 1MB )。 • 32 位计算机还能通过 位 32 位 32 位 long long 64 位 64 位 64 位 64 位 注意到 Unix 和 Windows 关于 long 的定义有分歧: Unix 认为 long 的大小应该和系统架构位数一样, 32 位系统上就 32 位, 64 位系统上就 64 位。 Windows 认为 long 不论 32 位系统还是 64 位系统都一样应该为 32 位,认为这样安全。 因此我们在编写 C
    0 码力 | 128 页 | 2.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    位整数即可,可以是有符号也可以 是无符号,任凭编译器决定( C 标准委员会传统异能, khronos 直呼内行) 。 • 以 GCC 为例,他规定 char 在 x86 架构是有符号的 (char = signed char) ,而在 arm 架构上则认为是无符号的 (char = unsigned char) ,因为他 认为“ arm 的指令集处理无符号 8 位整数更高效”,所以擅自把 char 魔改成无 十六进制的字母无视大小写,例如 stoi(“7CFE”, nullptr, 16) 的也会得到 31198 。 stoi 的第三参数: base stoi 的 base 参数实战案例 冷知识: stof 支持科学计数法 字符串流 第 5 章 那 to_string 能不能指定十六进制? • 很遗憾, to_string 是个缓解“键盘压力”的帮手函数,功能根本不全。 • 用 + 来拼接字符串也只 里手撸的两个函数(能支持任意 STL 容器的打印) : • https://github.com/zenustech/zeno/blob/master/zeno/include/zeno/utils/to_string.h • https://github.com/zenustech/zeno/blob/master/zeno/include/zeno/utils/format.h cout 支持十六进制
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 6 个物理核心上并行加速后, 还是变成 mem-bound 了。 • 加速比: 1.36 倍 • 应该达到 CPU 读取一个地址时: • 缓存会查找和该地址匹配的条目。如果找到,则给 CPU 返 回缓存中的数据。如果找不到,则向主内存发送请求,等读 取到该地址的数据,就创建一个新条目。 • 在 x86 架构中每个条目的存储 64 字节的数据,这个条目 又称之为缓存行( cacheline )。 • 当访问 0x0048~0x0050 这 4 个字节时,实际会导致 0x0040~0x0080 的 https://blog.csdn.net/qq_36287943/article/details/103601176 第 3 章:预取与直写 顺序访问与随机访问 • 随机访问的效率比顺序访问低的多。 • 其中一个原因当然是:随机访问只会访问到其中一个 float ,而这导致 他附近的 64 字节都被读取到缓存了,但实际只用到了其中 4 字节,之 后又没用到剩下的 60 字节,导致浪费了 94%
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南

    CMake 要求所有第三方 库作者统一包装成一个 Qt5Config.cmake 文件包含所有相关信息(类似于 nodejs 的 package.json ),比你单独的一个个去找动态库文件要灵活的多。 • 包配置文件由第三方库的作者( Qt 的开发团队)提供,在这个库安装时( Qt 的安装程序 或 apt install 等)会自动放到 /usr/lib/cmake/XXX/XXXConfig 用户找到并了解该包的具体信息。 • /usr/lib/cmake 这个位置是 CMake 和第三方库作者约定俗成的,由第三方库的安装程序 负责把包配置文件放到这里。如果第三方库的作者比较懒,没提供 CMake 支持(由安装 程序提供 XXXConfig.cmake ),那么得用另外的一套方法( FindXXX.cmake ),稍后细 谈。 Windows 系统下的搜索路径 • / • /cmake/ Windows 平台默认为 C:/Program Files 。 • 是你在 find_package( REQUIRED) 命令中指定的包名。 • 是系统的架构名。 https://zhuanlan.zhihu.com/p/60479441 Unix 类系统下的搜索路径 • /(lib/|lib*|share)/cmake/*/
    0 码力 | 56 页 | 6.87 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    ,那么洗脸和刷牙不能同时进行。但是烧开 水只需要占用煤气灶,和洗脸刷牙不冲突, 所以可以一边烧开水一边洗脸刷牙。 • 所以让小彭老师来优化的话,可以只需要 5 + 5 + 10 + 20 = 40 分钟,比你快一倍多。 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 这就是,无分支优化。 • setle 指令是单独一条指令,不需要跳转。 比起需要跳转的 jle 指令,他避免了 CPU 预测分支和预测失败带来的额外开销。 条件跳转指令 vs 无分支指令 • x86 指令集架构中,条件跳转指令有 j 开头的一系列,无分支指令有 set 系列和 cmov 系列。 • jle .L1 上一次比较结果为小于等于时,程序跳转到 .L1 处,否则不跳转继续往下执行。 • setle setle , setge , setl 等等。 • 冷知识: 32 位时代 cmov 系列曾经是 x86 的一个拓展特性(像 sse 一样),使用前需 要先用 cpuid 指令检测是否支持,如果在不支持 cmov 的 CPU 上使用会产生 SIGILL 错误。不过现在 64 位的 x86 CPU 都保证自带了 cmov 和 sse 拓展,所以不需要手动 开启什么开关编译器就会自动生成利用 cmov
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    章:汇编语言 x64 架构下的寄存器模型 通用寄存器: 32 位时代 • 32 位 x86 架构中的通用寄存器有: • eax, ecx, edx, ebx, esi, edi, esp, ebp • 其中 esp 是堆栈指针寄存器,和函数的调用与返回相关。 • 其中 eax 是用于保存返回值的寄存器。 通用寄存器: 64 位时代 • 64 位 x86 架构中的通用寄存器有: • const 一样是 C++ 标准的一部分。 • restrict 是 C99 标准关键字,但不是 C++ 标准的关键字。 • __restrict 其实是编译器的“私货”,好在大多数主流编译器都支持。 • 所以无耻的 C 艹标准委员会什么时候肯把他加入标准呢?看看人家 C 语言。 编译器优化:合并写入 将两个 int32 的写入合 并为一个 int64 的写入 。 合并写入:不能跳跃 但如果访问的两个元素地 因为他不敢保证运行这个程序的电脑支持 AVX 指令集…… 两个 int32 可以合并为一个 int64 四个 int32 可以合并为一个 __m128 八个 int32 可以合并为一个 __m256 让编译器自动检测当前硬件支持的指令集 -march=native 让编译器自动判断当前硬件支 持的指令。老师的电脑支持 AVX 指令集,所 以他用了。不过注意这样编译出的程序,可能 放到别人不支持 AVX 的电脑上没法运行。
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
共 33 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
Zadig面向开发开发者原生DevOps平台游人RustCCAtlasGraphC++高性性能高性能并行编程优化课件08MySQL1215071604
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩