积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(15)C++(13)Rust(2)

语言

全部中文(简体)(15)

格式

全部PPT文档 PPT(15)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 15 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    生活中无处不在的图 图分析技术分类 图查询 • 使用图数据库的查询语言进行点边搜索 图算法 • 中心性算法 • 社区算法 • 路径算法 • … 图深度学习 • 图嵌入 • 图卷积 • 图注意力网络 • 图自编码器 图查询及其应用场景 图查询 • 使用图数据库的查询语言进行点边的关联查询,可以快速完成传统数据库难以完成的 多度点边关 联 当前图的典型应用场景 路径识别 群体挖掘 AtlasGraph 架构及实现 新一代图技术应用特征简介 Takeaway AtlasGraph 架构概览 存储层 副本管理 CRAQ 图原生存储 索引 LSM-Tree 容灾保障 ( BR ) 元数据层 事务管理 MVOCC 计算层 Cypher AST 优化器 图计算 内存加速引 擎 服务接口 HTTP/RPC Spark Spark 连接器 Python UDF 执行器 索引管理 一致性存储 RAFT 分片管理 元数据 集群管理 用户权限 GNN 应用层 Atlas 图平台 Atlas Studio Atlas Client 基础 设施 Docker/K8S/VM X86/ARM - 基于 RUST 语言保证性能优势 - 分布式架构性能可线性扩展 - 针对大规模图优化的存算引擎
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 Rust分布式账务系统 - 胡宇

    ● 事务层与账户层分 离 ● 独立水平扩展 ● CQRS ● Event Sourcing ● 针对读场景,写场 景分别优化 ● 稳定的底层 API ● 灵活的顶层 API ● 树状结构 ● 聚合查询 ● 正确性:内存安全,线程安全 ● 可靠性: Raft 共识算法 raft-rs ● 高性能:关键路径无锁单线程 顶层架构 ● Gateway 路由层 ○ 业务 Marker 事务层 ○ 使用业务 id 进行路由 ○ 执行转账计划 ○ 分发账户变动请求 ● Auticuro 账户层 ○ 使用账户 id 进行分区 ○ 执行账户变动请求 ○ 更新账户余额 分布式账务系统 性能展示 8 vCPUs * 5 节点 SSD 磁盘 当 TPS = 10K 时, 延迟 P99 < 20ms 分布式账务系统 高吞吐,超低延迟 账户层: Auticuro Auticuro 分布式账务系统 账户层: Auticuro ● 1. 接受转账请求,转换成 events ○ Tokio + Tonic 分布式账务系统 1 2 3 4 ● 1. 接受转账请求,转换成 events ● 2. 将 events 送入 Raft 共识,等待 events 被多数节点保存 ○ 共识:基于 raft-rs 的可靠消息队 列 ○ 存储: Rocksdb
    0 码力 | 27 页 | 12.60 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    free(a[i]); • free(a); • ↑ 有 Java 病的人,才会这样分配二维数组,又低效,又不方便。 • 造成了 m + 1 次 malloc 调用,内存都是分散的,每次访问都要解开两层指针,非常低效。 • 分配 n*m 二维数组,正确的方式永远是: float *a = malloc(n * m * sizeof(float)); • 也不要用 vector> 序的循环,其 X 是外层循环体,在先后执行的时间上是不连续的。 • 从而在硬件看来,以 YX 序遍历,就和顺序访问一维数组没什么两样,从而缓存预取能正 常运作,甚至编译器可以优化成一个 nx*ny 的一层循环。 • 而如果以 XY 序遍历,就像跳跃着访问一样,不连续,缓存得不到利用,每次读取只用了 其中 4 字节,浪费了缓存行剩下的 60 字节,非常低效。 • 结论: • 对于 YX 序(列主序, 造成的,一部分是因为跳 跃的访存让 CPU 没有办法自动预取造成的 。 封装成 ndarray 类 ndarray.h ,同学们可以在作业或 是自己的项目里随意使用。 不要再用 Java 式的二层三层指针 了,用 ndarray<2, float> 声明一 个二维浮点数组, ndarray<3, int> 声明一个三维整型数组。 这里的 ndarray 通过 a(x, y) 来 索引,看起来像
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    个元素的平衡二叉树,深 度只有 ceil(log(n+1)) 层。也就是说我们最多只需要 ceil(log(n+1)) 次大小判断,就能找到任 意一个数!因为算法复杂度可以忽略 +1 -1 这些小东西,所以 set 查找的最坏复杂度是 O(logn) ! 2 1 4 5 8 7 4 要找的数 ceil(log(6+1)) = 3 层 4 < ? 从 set 到 map :无非是外挂了个值类型 3 次就找到了目标。这还是最坏的情况,最好只需要 1 次就够了。 • 最坏的情况需要判断多少次?最坏不会超过树的深度,而一棵有着 n 个元素的平衡二叉树,深 度只有 ceil(log(n+1)) 层。也就是说我们最多只需要 ceil(log(n+1)) 次大小判断,就能找到任 意一个数!因为算法复杂度可以忽略 +1 -1 这些小东西,所以 set 查找的最坏复杂度是 O(1) ! 4 要找的数
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    任务,一个负责下载,一个负责和用户交 互。并在主线程中等待该任务组里的任务 全部执行完毕。 • 区别在于,一个任务不一定对应一个线程 ,如果任务数量超过 CPU 最大的线程数, 会由 TBB 在用户层负责调度任务运行在 多个预先分配好的线程,而不是由操作系 统负责调度线程运行在多个物理核心。 封装好了: parallel_invoke 更好的例子 第 1 章:并行循环 时间复杂度( time-efficiency auto_partitioner 快 3.31 倍 原因 • tbb::simple_partitioner 能够按照给定的粒度 大小( grain )将矩阵进行分块。块内部小区 域按照常规的两层循环访问以便矢量化,块外 部大区域则以类似 Z 字型的曲线遍历,这样 能保证每次访问的数据在地址上比较靠近,并 且都是最近访问过的,从而已经在缓存里可以 直接读写,避免了从主内存读写的超高延迟。
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    进一步求值: if (“world” MATCHES “Hello”) 从而会执行假分支,结果不正常了。 解决:用引号包裹起来,防止被当做变量名 初学者如果搞不明白,可以把所有不确定的地方都套上一层引号, 例如” ${MYVAR}” ,这样就可以避免被 if 当做变量名来求值了。 第 10 章:变量与作用域 变量的传播规则:父会传给子 • 父模块里定义的变量,会传递给子模块。 变量的传播规则:子不传给父 • 如果父模块里本来就定义了同名变量,则离开子模块后仍保持父模块原来设置的值。 如果子模块需要向父模块里传变量怎么办? • 可以用 set 的 PARENT_SCOPE 选项,把一个变量传递到上一层作用域(也就是父模 块)。 如果子模块需要向父模块里传变量怎么办? • 如果父模块里没有定义 MYVAR 的话,也可以用缓存变量向外部传变量(不推荐)。但是 这样就不光父模块可见了,父模块的父模块,到处都可见。
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    字符串的连接( + 运算符) • 错误: • 正确: C++14 新特性:自定义字面量后缀 • 不少同学就觉得这样好麻烦,其他语言都是直接 “ hello” 就是字符串类 型, C++ 还得套一层壳 string(“hello”) 才能变成安全封装的类型,才能用他 的成员函数。 • 因此, C++14 引入了一项缓解“键盘压力”的新特性: • 写 “ hello”_s 就相当于写 operator“”_s(“hello” 表示函数参数。 • _Tp_xyz 表示模板类型参数。 string 的空基类优化 • 首先映入眼帘的是 _Alloc_hider 这个奇怪的类,包装了一 下首地址指针 _M_p 。为什么要套这一层壳?这其实是为 了防止 allocator 对象浪费空间的优化手段。俗称空基类 优化,问题来了,为什么需要空基类优化? string 的空基类优化 • 如果不优化的话,是会把 allocator 直接作为成员变量放
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 09 CUDA C++ 流体仿真实战

    :分离实现 CMake :使用 CUDA 编译器,链接 OpenVDB 在 Blender 中查看导出的结果 边界条件 边界条件:初始化 边界条件:添加判断边界的版本 边界条件:仅在第一层额外判断边界条件 进一步改进 VDB 导出:支持导出多个网格,并指定名称 进一步改进 VDB 导出: P-IMPL 模式 进一步改进 VDB 导出: F-IMPL 模式 Blender 渲染结果
    0 码力 | 58 页 | 14.90 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    不需要,其实我们只需要定义 hellolib 的头文件搜索路径,引用他的可执行文件 CMake 会自动添加这个路径: • 这里用了 . 表示当前路径,因为子目录里的路径是相对路径,类似还有 .. 表示上一层目 录。 • 此外,如果不希望让引用 hellolib 的可执行文件自动添加这个路径,把 PUBLIC 改成 PRIVATE 即可。这就是他们的用途:决定一个属性要不要在被 link 的时候传播。
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    parallel for collapse(2) 遍历二维区间。 把 func 捕获为 firstprivate ,从而支持用 lambda 捕获的访问者模式。 实现访问者模式 • 额,总之就是每一层都有一个缓存。 第 5 章:量化整型 使用 int :每个占据 4 字节 • 记得我第七课说过,一个简单的循环体往 往会导致内存成为瓶颈( memory- bound )。 • 右边就是一个很好的例子。
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
游人RustCCAtlasGraph胡宇rust分布布式分布式账务系统C++高性性能高性能并行编程优化课件0717061115090110
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩