C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 什么是 xmm 系列寄存器? • xmm 寄存器有 128 位宽。 • 可以容纳 4 个 float ,或 2 个 double 。 • 刚才的案例中只用到了 xmm 的低 32 位 用于存储 1 个 float 。 addss 是什么意思? • 可以拆分成三个部分: add , s , s 1. add 表示执行加法操作。 2. 第一个 s 表示标量 (scalar) ,只对 xmm 的容器:我是说,内存分配在堆上的容器 • 存储在堆上(妨碍优化): • vector, map, set, string, function, any • unique_ptr, shared_ptr, weak_ptr • 存储在栈上(利于优化): • array, bitset, glm::vec, string_view • pair, tuple, optional, variant 存储在栈上无法动态扩充大小,这就是0 码力 | 108 页 | 9.47 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程blockDim ,看起来非常方便。 从线程到板块 • 核函数内部,用之前说到的 blockDim.x + blockIdx.x + threadIdx.x 来获取线程在整个 网格中编号。 • 外部调用者,则是根据不同的 n 决定板块的 数量( gridDim ),而每个板块具有的线程 数量( blockDim )则是固定的 128 。 • 因此,我们可以用 n / 128 作为 gridDim CUDA 源码生效,这样可以混合其他 .cpp 文件也不会发生 gcc 报错的情况了。。 如何捕获外部变量? • 如果试图用 [&] 捕获变量是会出错的,毕 竟这时候捕获到的是堆栈( CPU 内存)上 的变量 arr 本身,而不是 arr 所指向的内 存地址( GPU 内存)。 如何捕获外部变量? • 你可能会想,是不是可以用 [=] 按值捕获 ,这样捕获到的就是指针了吧? • 错了,不要忘了我们第二课说过, 错了,不要忘了我们第二课说过, vector 的拷贝是深拷贝(绝大多数 C++ 类都是深 拷贝,除了智能指针和原始指针)。这样 只会把 vector 整个地拷贝到 GPU 上! 而不是浅拷贝其起始地址指针。 如何捕获外部变量? • 正确的做法是先获取 arr.data() 的值到 arr_data 变量,然后用 [=] 按值捕获 arr_data ,函数体里面也通过 arr_data 来访问 arr 。0 码力 | 142 页 | 13.52 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 数据。如果没有,则从内存中读取,并存储到缓存中; 如果有,则直接使用缓存中的数据。 • 这样一来,访问的数据量比较小时,就可以自动预先加 载到这个更高效的缓存里,然后再开始做运算,从而避 免从外部内存读写的超高延迟。 宽。三级缓存也装不下,那就取决于主内存 的带宽了。 • 结论:要避免 mem-bound ,数据量尽量足 够小,如果能装的进缓存就高效了。 L2: 256 KB L3: 12 MB 缓存的工作机制:读 • 缓存中存储的数据结构: • struct CacheEntry { • bool valid; • uint64_t address; • char data[64]; • }; 架构中每个条目的存储 64 字节的数据,这个条目 又称之为缓存行( cacheline )。 • 当访问 0x0048~0x0050 这 4 个字节时,实际会导致 0x0040~0x0080 的 64 字节数据整个被读取到缓存中。 • 这就是为什么我们喜欢把数据结构的起始地址和大小对齐到 64 字节,为的是不要浪费缓存行的存储空间。 缓存的工作机制:写 • 缓存中存储的数据结构:0 码力 | 147 页 | 18.88 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南1 章:添加源文件 一个 .cpp 源文件用于测试 CMake 中添加一个可执行文件作为构建目标 另一种方式:先创建目标,稍后再添加源文件 如果有多个源文件呢? 逐个添加即可 使用变量来存储 建议把头文件也加上,这样在 VS 里可以出现在“ Header Files” 一栏 使用 GLOB 自动查找当前目录下指定扩展名的文件,实现批量添加源文件 启用 CONFIGURE_DEPENDS 可以看到第二次的输出少了很多,这是因为 CMake 第一遍需要检测编译器 和 C++ 特性等比较耗时,检测完会把结果存储到缓存中,这样第二遍运行 cmake -B build 时就可以直接用缓存的值,就不需要再检测一遍了。 如何清除缓存?删 build 大法了解一下 然而有时候外部的情况有所更新,这时候 CMake 里缓存的却是旧的值,会导致一系列问题。 这时我们需要清除缓存,最简单的办法就是删除 -B build 来启动 图形界面编辑各个缓存选项。 • 当然,直接用编辑器打开 build/CMakeCache.txt 修改后保存也是可以的。 • CMakeCache.txt 用文本存储数据,就是可供用 户手动编辑,或是被第三方软件打开并解析的。 缓存变量到底该如何更新?暴力解决:删 build 大法 用万能的“删 build 大法”当然是可以的。这样重新执行的时候缓存变量不存在,0 码力 | 166 页 | 6.54 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践 DogObject 继承自 IObject ,他 们实现了 eatFood 这个虚函数,实现了多态。 • 注意这里解构函数( ~IObject )也需要是虚函数 ,否则以 IObject * 存储的指针在 delete 时只 会释放 IObject 里的成员,而不会释放 CatObject 里的成员 string m_catFood 。所以 这里的解构函数也是多态的,他根据类型的不同 return zzz; }() • 可以在表达式层面里插入一个语句块,本 质上是立即求值的 lambda 表达式(内部 是分号级别,外部是逗号级别)。 • 在函数体内也可以这样: • [&]{ xxx; yyy; return zzz; }() • 来在语句块内使用外部的局部变量。 带有构造函数和解构函数的类 • 实际上,只需定义一个带有构造函数和解构函 数的类(这里的 Helper ),然后一个声明该类 const &desc); • 则 func(Descriptor(...)); • 与 func({...}); • 等价( C++11 起)。 Zeno 中一切节点的基类 • 输入输出全部存储在节点的 inputs 和 outputs 成员变量上。 • inputBounds 表示他连接在哪个节点的哪 个端口上,比如 {“PrimitiveCreate”, “prim”} 就表示这个端口连接了0 码力 | 54 页 | 3.94 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串计算机如何表达字符 • 众所周知,计算机只能处理二进制 整数,字符要怎么办呢? • 于是就有了 ASCII 码表,他规定, 每个英文字符(包括大小写字母、 数字、特殊符号)都对应着一个整 数。在计算机里只要存储这个的整 数,就能代表这个字符了。 • 例如 32 代表空格, 48 代表 ‘ 0’ , 65 代表 ‘ A’ , 97 代表 ‘ a’…… • 32~126 这些整数就用于是表示这些 可显示字符 ≥ s.size() 时,会抛出 std::out_of_range 异常终止程序。使用 gdb 等调试 器就可以在出这个异常的时候暂停,帮你调试错误 ( BV1kP4y1K7Eo )。也可以从外部函数 catch 住这个异常(以 后再讲)。 • 而 [] 则不会抛出异常,他只是简单地给字符串的首地址指针和 i 做个加法运算,得到新的指针并解引用。如果你给的 i 超过了字符 串大小 i ≥ 和 string 其实都是胖指针。 • string 和 vector 内部都有三个成员变量: ptr, len, capacity 。 • 前两个 [ptr, len] 其实就是表示实际有效范围(存储了字符的)的胖指针。 • 而 [ptr, capacity] 就是表示实际已分配内存(操作系统认为的)的胖指针。 • struct vector { • char *ptr; • size_t0 码力 | 162 页 | 40.20 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 用了工作窃取法来分配任务: 当一个线程 t1 做完自己队列里全部的工 作时,会从另一个工作中线程 t2 的队列 里取出任务,以免 t1 闲置浪费时间。 • 因此内部 for 循环有可能“窃取”到另一个 外部 for 循环的任务,从而导致 mutex 被重复上锁。 解决 1 :用标准库的递归锁 std::recursive_mutex 解决 2 :创建另一个任务域,这样不同域之间就不会窃取工作 直接读写,避免了从主内存读写的超高延迟。 • 下次课会进一步深入探讨访存优化,详细剖析 这个案例,那么下周六 14 点敬请期待。 第 6 章:并发容器 std::vector 扩容时会移动元素 • std::vector 内部存储了一个指针,指向一段容量 capacity 大于等于其 size 的内存。 • 众所周知, push_back 会导致 size 加 1 ,但 当他看到容量 capacity 等于当前 size0 码力 | 116 页 | 15.85 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型第 0 章:稀疏矩阵 稠密数组存储矩阵 用 foreach 包装一下枚举的过程 改用 map 来存储 分离 read/write/create 三种访问模式 foreach 直接给出当前坐标指向的值 改用 unordered_map 来存储 unordered_map 手动 read(i, j) 也一样速度 索性把坐标和值打包成 tuple ,存储在 vector 按行压缩( Compressed e91.html 第 1 章:稀疏网格 稠密网格计算粒子经过的格点数量 改用更小的 char 存储 只用一个 bit 存储,一个 char 可以存储 8 个 bit 用 map 来存储 读取:如果不存在,则读到 0 写入:如果不存在,则创建该表项 用 unordered_map 来存储 map 基于红黑树,会按照键值排序,需要键值具有 operator< 重载,复杂度 O(logn) 16x16 分块存储 分块能减少 unordered_map 中存储的表项数量,从而减轻哈 希的压力。但意味着键值在空间上需要具有一定的局域性,否 则 会浪费分块中一 部分空间。 然而我们这里是 要用他记录粒子 经过的点,因此 具有一定空间局 域性,能够被分 块优化。 实际上空间局域 性正是稀疏网格 能够实现的一大 前提,稍后详细 讨论。 在 16x16 分块的基础上,只用一个 bit 存储 图片解释稀疏的好处0 码力 | 102 页 | 9.50 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 09 CUDA C++ 流体仿真实战进一步改进 VDB 导出:支持导出多个网格,并指定名称 进一步改进 VDB 导出: P-IMPL 模式 进一步改进 VDB 导出: F-IMPL 模式 Blender 渲染结果 改进 改进边界条件:外部边界流出而不是反弹,内部边界可以流出速度 Blender 中调整一下材质 Blender 中调整一下材质 改进对流:让烟雾随时间逐渐褪色 改进对流:让烟雾随时间逐渐褪色 改进褪色:不是褪色0 码力 | 58 页 | 14.90 MB | 1 年前3
应用 waPC (rust) 做软件测试工具协议标准化了本机代码调用 WebAssembly 和 WebAssembly 调用本机代码的通信 (messaging) 和 错误处理 (error handling) 。 什么是 waPC? WASM 外部函数 接口 FFI Input type Return type Platform 底层 I32 I32 Unknown waPC &[u8] Result,error 0 码力 | 30 页 | 2.50 MB | 1 年前3
共 30 条
- 1
- 2
- 3













