积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(30)C++(19)Rust(10)系统运维(2)DevOps(2)数据库(1)Go(1)MySQL(1)云计算&大数据(1)Kubernetes(1)

语言

全部中文(简体)(31)中文(简体)(2)英语(1)

格式

全部PPT文档 PPT(34)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 34 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • Go
  • MySQL
  • 云计算&大数据
  • Kubernetes
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    CUDA 开启的 GPU 编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 前置条件 • 学过 C/C++ 语言编程。 • 理解 malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 device ; device 可以调用 device 。 声明为内联函数 • 注意, inline 在现代 C++ 中的效果是声明一个函数为 weak 符号,和性能优化意义上的内联无关。 • 优化意义上的内联指把函数体直接放到调用者那里去。 • 因此 CUDA 编译器提供了一个“私货”关键字: __inline__ 来 声明一个函数为内联。不论是 CPU 函数还是 GPU 都可以使 用,只要你用的 CUDA 编译器。 GCC 编译器相应的私货则 是 __attribute__((“inline”)) 。 • 注意声明为 __inline__ 不一定就保证内联了,如果函数太大编 译器可能会放弃内联化。因此 CUDA 还提供 __forceinline__ 这个关键字来强制一个函数为内联。 GCC 也有相应的 __attribute__((“always_inline”))
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    TBB 开启的并行编程之旅 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1 cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 图像。总共只花了 1 分钟。 图形学爱好者:我看中的是多核,目的是加速比,如果是单核,那多线程对我无用! 某互联网公司:我看中的是异步,目的是无阻塞,即使是单核,多线程对我也有用。 因特尔开源的并行编程库: TBB https://link.springer.com/chapter/10.1007%2F978-1-4842-4398-5_2 安装 TBB • Ubuntu: • sudo apt-get
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    C++ 进阶:模板元编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 不如函数式和元编程香了? 这个例子要是按传统的面向对象思想,可能是这样: 令 Int, Float, Double 继承 Numeric 接口类并实现 ,其中 multiply(int) 作为虚函数。然后定义: Numeric *twice(Numeric *t) { return t->multiply(2); } 且不说这样的性能问题,你忍得住寂寞去重复定义好 几个,然后每个运算符都要声明一个纯虚函数吗?
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 Rust分布式账务系统 - 胡宇

    第三届中国 Rust 开发者大会 Rust 构建分布式账务系统 在 Fintech 公司落地 Rust 项目的经验分享 Airwalle x 胡宇 Airwallex 我们是一家跨境支付领域的 Fintech 独角兽 关于我们 E2 轮 Fintech 独角兽,业务遍布全球 关于我们: Airwallex 墨尔本 新加坡 伦敦 深圳 香港 北京 旧金山 上海 东京 提供高效,低成本的数字银行服务 关于我们: Airwallex 从设计架构到实现细节 项目介绍 分布式账务系统 Fintech 互联网 正确性 bug= 资损 bug 不可怕,快速迭代 可靠性 丢数据 = 资损 允许数据丢失 性能 超低延迟 + 高吞吐 超高吞吐 交易日志 审计,监管 调试使用 分布式账务系统 Fintech 领域中的软件与互联网软件的不同 需求分析 支付处理: ● 转账 高可用:在部分节点失效的情况下,依旧可以提供正确的 服务 超低延迟:实时交易,超低响应延迟 水平扩展性:利用分布式事务实现钱包集群的的水平扩 展,应对高达 100 万 TPS 的流量 可演化性:业务逻辑与底层 API 解耦,当业务发生改变 时,底层 API 不用改变 分布式账务系统 设计理念 - Rust 是我们可靠的基石 分布式账务系统 存算分离 API 解耦 读写分离 层级账号 Rust ● 事务层与账户层分
    0 码力 | 27 页 | 12.60 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 函数体内 的运算推迟到 future 的 get() 被调用时。 也就是 main 中的 interact 计算完毕后。 • 这种写法, download 的执行仍在主线程 中,他只是函数式编程范式意义上的异步 ,而不涉及到真正的多线程。可以用这个 实现惰性求值( lazy evaluation )之类。 std::async 的底层实现: std::promise • 如果不想让
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    删除 m.erase(key) 删除这个值 默默放弃 对学有余力的同学,再扩充为小彭老师六定律: 安全的读取,要用 val = m.at(key) 自动初始零的读取, val = m[key] 覆盖式写入,要用 m.insert_or_assign(key, val) 不覆盖写入,要用 m.insert({key, val}) 判断是否存在,用 m.count(key) 若存在则删除,用 m.erase(key)
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    LANGUAGES 字段 • project( 项目名 LANGUAGES 使用的语言列表 ...) 指定了该项目使用了哪些编程语言。 • 目前支持的语言包括: • C : C 语言 • CXX : C++ 语言 • ASM :汇编语言 • Fortran :老年人的编程语言 • CUDA :英伟达的 CUDA ( 3.8 版本新增) • OBJC :苹果的 Objective-C ( 3 3.16 版本新增) • OBJCXX :苹果的 Objective-C++ ( 3.16 版本新增) • ISPC :一种因特尔的自动 SIMD 编程语言( 3.18 版本新增) • 如果不指定 LANGUAGES ,默认为 C 和 CXX 。 https://cmake.org/cmake/help/latest/command/project.html 常见问题: LANGUAGES C:\Qt\Qt5.14.2\msvc2019_64\lib\cmake ,当然刚刚说了尽管你是 Windows 还是要把 \ 全部换成 / ,因为 CMake 是“亲 Unix” 的构建系统。 • 是的,学个编程跟隔壁史地政一样,有地缘因素在里边…… 更好的方法:设置 < 包名 >_DIR 变量指向 < 包名 >Config.cmake 所 在位置 • 第二种是设置 Qt5_DIR 这个变量为 C:\Qt\Qt5
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    a’[i] = (a[i - 1] + a[i + 1]) * 0.5 • 那么也应该有 a’’[i] = (a’[i - 1] + a’[i + 1]) * 0.5 • 不妨带入 (1) 式到 (2) 式,得到: • a’’[i] = (a[i - 2] + a[i + 2]) * 0.25 + a[i] * 0.5 • 我们得到了求出两次迭代后状态的公式。这样 就可以在一个循环体内实现两次迭代的效果! 对齐,他底层也是基于 aligned_alloc 实现 的。 案例:临时创建的数组 • 临时创建的数组,每次调用 func 都会重 复内存分配一次(进入一次内核态),非 常浪费时间。 解决:手动池化 • 声明为 static 变量,这样第二次进入 func 的时候还是 同一个数组,不需要重复分配内存。 thread_local 表示 如有多个线程,每个线程保留一个 tmp 对象的副本, 防止多线程调用 没有办法自动预取造成的 。 封装成 ndarray 类 ndarray.h ,同学们可以在作业或 是自己的项目里随意使用。 不要再用 Java 式的二层三层指针 了,用 ndarray<2, float> 声明一 个二维浮点数组, ndarray<3, int> 声明一个三维整型数组。 这里的 ndarray 通过 a(x, y) 来 索引,看起来像 Fortran ,但是 实际上还是 YX 序,和静态数组
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 单文件编译虽然方便,但也有如下缺点: 1. 所有的代码都堆在一起,不利于模块化和理解。 2. 工程变大时,编译时间变得很长,改动一个地方就得全部重新编译。 • 因此,我们提出多文件编译的概念,文件之间通过符号声明相互引用。 • > g++ -c hello.cpp -o hello.o • > g++ -c main.cpp -o main.o • 其中使用 -c 选项指定生成临时的对象文件 main
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
共 34 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件080603胡宇rust分布布式分布式账务系统0517110701
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩