Zadig 面向开发者的云原生 DevOps 平台DevOps 方案 ZadigX 云原生 DevOps 方案 降本提效 组织能力提升 业务负责人 研发不透明,规划凭感觉: • 发版时间靠运气 • 团队熬夜冲进度 研发透明化:不同项目清晰可见的效率、质量、进度 进度管理:根据团队客观数据,预测和确定项目规划 迭代进度一目了然 项目从无到有可核算 管理有数据科学依据 解放管理,更多时间花在 业务创新 平台运维 业务压力大,能力建设缓慢: • 大量工作花在工具链维护 • 项目间依赖复杂,环境管理难 • 交付版本依赖工单,发布风险高 • 公共资源 / 业务资源利用率低 赋能多业务:一个平台解决了多异构项目的管理和规范 团队高效协作:定义团队角色工作流模板,随时可用云上环境 价值清晰呈现:为管理者提供全视角效能数据,赋能数字决策 人工低效操作减少 80% 构建资源利用率提升 60% 业务资源利用率提升 30% 测试 效率和质量难以平衡: • 自动化测试难以开展 • 环境不稳定并行验证效率低 • 测试多苦劳,价值难以体现 测试效果提升:独立稳定环境用于测试验收、自动化建设 价值被团队感知:自动化测试从开发到发布被全团队感知 部署频率升高 1-5 倍 验证有效性提升 100% 解放测试,全面自动化 提升效率,建设质量体系 安全 安全建设被动: • 安全建设缺乏时机和抓手 • 出现问题,影响业务进度0 码力 | 59 页 | 81.43 MB | 1 年前3
新一代分布式高性能图数据库的构建 - 沈游人新一代分布式高性能图数据库的构建 北京海致星图科技有限公司 2023-06-18 沈游人 数据库与大数据专场 海致简介—企业级知识图谱开创者 专业顶尖技术团队支撑 超 700 人团队,其中 80% 为技术人员,创始团队在完成全球第一个中文知 识图谱网站研发后,探索知识图谱技术在企业领域的应用。 2021 年,海致院 士专家工作站成立,站内清华大学计算机博士生占比达 90% 以上。 企业级数据解决方案专家 泰斗和先行者。 2021 年 3 月 25 日,海致科技与清华大学计算机科学与技术系共同建设高性能图计算院士专家工作站 。 高性能图计算是高性能计算、图计算两项技术融合产生的新的技术方向,满足人们对更大规模、更复 杂数据的实时处理和存储需求,是计算机领域竞争新战略制高点。 产学结合、协同创新,打造全球领先的国产自研图数据库 AtlasGraph ,培育世界级的图计算软硬件 生态体系,保持对全球科技竞争的战略均衡。 域“卡脖子”现象的发生。 海致科技集团、海致星图联合清华大学研发的“ AtlasGraph 大规模图数据分析平 台”荣获中国计算机学会( CCF : China Computer Federation )“ 2021 年 CCF 科 学技术奖科技进步卓越奖”。 伴随市场对于知识图谱应用的不断深入,图数据规模和应用性能之间的矛盾愈 加凸显,海致针对以上背景展开了系统性的技术攻关,解决了图数据的高效存0 码力 | 38 页 | 24.68 MB | 1 年前3
Zadig 产品使用手册效调试、消除手工操作、精准快 速迭代、研发生产力 / 幸福感提 升 自助运行、系统化管理、自动化 程度高、测试有效性提升、质量 有保障、横向赋能、技能提升 随时调用工程基线提供的能力、 产品视角开发交付、团队高效协 同、稳定迭代 产研数字化过程数据透明、关键 指标易抽取、有能力合理调动资 源、随时决策响应客户需求 碎片化 研 发模 式 产研全流程拉通需求到上线所需的代码、服务、配置和数据的一致性交付 O O , 硅 谷 2 1 年 经 验 , 谷 歌 早 期 工 程 师 , 硅 谷 连 续 创 业 者 , 斯 坦 福 大 学 运 筹 工 程 学 系 全 额 奖 学 金 毕 业 。 创始团队 产研最佳实践0 码力 | 52 页 | 22.95 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南Qt5Config.cmake 文件包含所有相关信息(类似于 nodejs 的 package.json ),比你单独的一个个去找动态库文件要灵活的多。 • 包配置文件由第三方库的作者( Qt 的开发团队)提供,在这个库安装时( Qt 的安装程序 或 apt install 等)会自动放到 /usr/lib/cmake/XXX/XXXConfig.cmake 这个路径(其中 XXX 是包名),供 CMake 呢?就冲突了。所以“单次有效”虽然劳驾您的高抬贵手每次命令行打一下 - DQt5_DIR=”D:/Qt5” ,但人家也打一下 -DQt5_DIR=”E:/Qt5” ,就没有冲突,各美其美,美美与 共,赋能多元化社会,下沉团队合作发力面。 • 实际上只要你不删 build ,不需要每次都 -DQt5_DIR 一下, CMake 具有“记忆”功能。 • cmake -B build -DQt5_DIR=D:/Qt50 码力 | 56 页 | 6.87 MB | 1 年前3
CeresDB Rust 生产实践 任春韶优化了写入性能 优化了分布式方案 CeresDB – 目标 解决时间线高基数问题 • 能高效处理好 APM 型时序数据 • 同时能高效处理好高基数时间线场景 提供原生分布式方案 • 大规模部署 • 提供高可用、高可靠的服务 • 支持水平扩容 • 支持高效的分布式查询 - Tokio Preemption - Future Cancellation Rust 生产实践0 码力 | 22 页 | 6.95 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评0 码力 | 32 页 | 11.40 MB | 1 年前3
Go读书会第二期站在语言设计者的高度理解 Go 的与众不同 Go 诞生 与演进 Go 设计哲 学 Go 编程思 维举例 怎么学习 Go 思维? 学习本质是一种模仿。要学习 Go 思维,就要 去模仿 go 团队、 go 社区的优秀项目和代 码,看看他们怎么做的 践行哲学,遵循惯例,认清本质,理解原理 Part2 – 项目基础:布局、代码风格与命名 践行哲学,遵循惯例,认清本质,理解原理 每个 gopher0 码力 | 26 页 | 4.55 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评0 码力 | 108 页 | 9.47 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评0 码力 | 82 页 | 12.15 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评0 码力 | 116 页 | 15.85 MB | 1 年前3
共 12 条
- 1
- 2













