积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(18)C++(13)Rust(5)系统运维(2)DevOps(2)数据库(1)MySQL(1)

语言

全部中文(简体)(20)中文(简体)(1)

格式

全部PPT文档 PPT(21)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 21 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    银行证券保险 企业、公安部、上海市公安局、武汉市公安局等 100+ 公安机构,国家电网、 国信通产业集团等电力能源行业提供数据智能产品解决方案及长期服务。 海致专注为政府、金融、能源等客户提供大数据处理、分析、挖掘服务,在互 联网技术基础上,打造专业、易用的企业级大数据实战应用产品及解决方案。 北京中关村总部 武汉运维中心 深圳研发中心 上海应用中心 专注于数据智能技术赋能中国数字经济发展 AtlasGraph 大规模图数据分析平 台”荣获中国计算机学会( CCF : China Computer Federation )“ 2021 年 CCF 科 学技术奖科技进步卓越奖”。 伴随市场对于知识图谱应用的不断深入,图数据规模和应用性能之间的矛盾愈 加凸显,海致针对以上背景展开了系统性的技术攻关,解决了图数据的高效存 储、索引及复制难题,提出了基于图缩减的高效分析方法,并孵化出了一个大 规模图数据分析平台 AtlasGraph 。 5 获得 2022 年中国电子学会科学技术奖科技进步一等奖 中国电子学会发布的《 2022 中国电子学会科学技术奖公告》,海 致星图与北京邮电大学、蚂蚁科技集团有限公司、中移动信息技术 有限公司联合研发的“大规模复杂异质图数据智能分析技术与规模化 应用”项目,斩获“科学技术奖科技进步一等奖”,这也是国内电子信 息领域的最高奖项。 该奖
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    Zadig 优势、使用场景、解决问题域 Zadig 解决问题域 Zadig 云原生开放性:极简、 0 负担接入 Zadig 业务架构 Zadig 系统架构 1 Zadig 行业方案 对比分析 职能 传统 DevOps 方案 ZadigX 云原生 DevOps 方案 降本提效 组织能力提升 业务负责人 研发不透明,规划凭感觉: • 发版时间靠运气 • 团队熬夜冲进度 研发 / 高效率 / 低成本 • 人在系统之上 / 高效交互 • 复杂性下沉到单一平台 整体人效提升 1-5 倍 解除组织 / 流程 / 系统 孤岛,打造成长型组织 企业收益分析 现存方案 典型代表 方案特点分析 Zadig 方案优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 运行效率低,管理维护成本高 方案局限性大,安全性风险高 无法支持敏捷交付模式;手工维护成本 实施负担较重难以推广 面向多云厂商友好,实施迁移成本极低,可扩展性 强,全球多地跨云跨域安全可靠自动化部署 企业基于 CI/CD 工具自建 DevOps 流程平台 围绕 Jenkins 、 Tekton 、 Argo 等 搭建流程串接胶水平台 建设成本高 500-2000 万之间 使用和学习门槛高;随业务发展扩展性差 局限性大,内部推广难度极高,做完后维 护成本高价值难被证明
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 Zadig 产品使用手册

    使用门槛极低 现存做法大多以「单点工具 + 写脚本」或运管类平台为主, Zadig 则是面向开发者视角,中立,云原生一体化价值链平台。 与现存 DevOps 方案对比: 现存方案 典型代表 方案特点分析 Zadig 优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 运行效率低,管理维护成本高 方案局限性大,安全性风险高 无法支持敏捷交付模式 支持从需求到发布全流程敏捷交付。尤其面向 和最佳实践,基于平台工程打造,可以轻松连 接一切工具链 企业自建 DevOps 流程平台 围绕 Jenkins 或 CI/CD 工具 搭建流程串接胶水平台 局限性大扩展性差 内部推广难度极高 做完后价值难被证明 通用性、可扩展性、技术先进性强,可以灵活 广泛接入各种技术和业务场景 基于代码管理的 DevOps 方案 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 工作流更新环境进行集成验证 包括步骤:构建 -> 部署 sit 环境 -> 接口测试 -> IM 通知 Sprint 发布 需求开发 变更发布 产品规划 测试验证 自动化测试——测试结果分析 Sprint 发布 需求开发 变更发布 产品规划 测试验证 uat 发布——执行 uat 工作流做预发布验证 步骤包含:质量门禁 -> 构建 ->nacos 变更 -> 部署 uat
    0 码力 | 52 页 | 22.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    e 等于 equal ne 不等于 not equal http://unixwiz.net/techtips/x86-jumps.html 手动进行无分支优化的方法 无分支优化:从汇编角度分析 • 发生了什么?让我们把源码和汇编逐个对应。 • x 是第一个参数(通过 edi 传入,被存入 rbp 指向的堆 栈) • 比较 x 和 0 的大小( cmp 命令把刚存入堆栈的 x 和 0 转换成 int 类型( movzx 把 1 字节的 al 转换成 4 字节的 eax ,零扩展:高 3 字节 填充零) • 返回类型 int 占据 4 字节( eax 寄存器就是 4 字节的) • 返回值都放 eax 寄存器(刚刚算得的就在 eax ,直接返 回) 无分支优化:从语法角度分析 • 刚刚其实是利用了 C 语言把 bool 类型的 true 当做 1 , false 当做 ifelse 的。 “ 摆大烂”的效果和 ifelse 几乎一样,也就是说根本没用,三目运算符还是生成了 低效的跳转指令,自己不上进,还指望编译器来救你?你还不如坐等天上掉馅饼。 从汇编角度分析( -O0 ) 从汇编角度分析( -O3 ) 因为 clamp 用了两次分支, if-else-if-else ,刚才 -O0 时是需要连续两次条件跳转指令的。 但是在 -O3 的淫威下,编译器把其中一个条件跳转自动优化掉了(
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺

    • OOXML - Excel 解析库 • xlsx2csv - Excel 转 CSV 工具 • Unqlite - 单文件非关系型数据库 • Wisecondor - 生物信息 CNV 分析 • mdsn - A Multi-address DSN(Data Source Name) parser. TDengine 应用开发组 • Python/Rust/Go 连接器 • 数据可视化 VARCHAR(24)) TDengine - 业务模式 开源版 企业版 云服务版 核心功能开源 • SQL 支持 • 无模式写入 • 缓存 • 流计算 • 数据订阅 • 集群、高可用 高可靠、线性扩展 + 专业技术服务 • 边云数据复制 • 跨云 / 异地数据复制 • 增量备份 • 多级存储 • 工业数据接入 全托管时序数据 管理云服务平台 • 全托管服务 • VPC 对等连接 模块之间关联性不高但模块组成复杂,可维护性差 • 大量设备大量数据归集存储,存储压力大 • 数据总线 / 消息队列消息接入,定制化程度要求高 • 数据业务逻辑自定义需求强 • 一定的实时数据分析能力 taosX - 功能路线图 集群运维 数据接入 流式处理 流式处理 数据分享 开放平台 • Backup/Restore • Replication • Migration •
    0 码力 | 29 页 | 2.26 MB | 1 年前
    3
  • ppt文档 Rust分布式账务系统 - 胡宇

    Fintech 领域中的软件与互联网软件的不同 需求分析 支付处理: ● 转账 ● 冻资 / 解资 ● 账户限额 ● 批处理事务 正确性:无双花或少付 审计监管:交易日志不可篡改,交易历史可回溯 条件事务:根据一定的条件决定事务执行与否 高可用:在部分节点失效的情况下,依旧可以提供正确的 服务 超低延迟:实时交易,超低响应延迟 水平扩展性:利用分布式事务实现钱包集群的的水平扩 展,应对高达 API 不用改变 分布式账务系统 设计理念 - Rust 是我们可靠的基石 分布式账务系统 存算分离 API 解耦 读写分离 层级账号 Rust ● 事务层与账户层分 离 ● 独立水平扩展 ● CQRS ● Event Sourcing ● 针对读场景,写场 景分别优化 ● 稳定的底层 API ● 灵活的顶层 API ● 树状结构 ● 聚合查询 ● 正确性:内存安全,线程安全
    0 码力 | 27 页 | 12.60 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    *)(rdi + rsi * 4) size_t 在 64 位系统上相当于 uint64_t size_t 在 32 位系统上相当于 uint32_t 从而不需要用 movslq 从 32 位符号扩展 到 64 位,更高效。而且也能处理数组大 小超过 INT_MAX 的情况,推荐始终用 size_t 表示数组大小和索引。 浮点作为参数和返回: xmm 系列寄存器 xmm0 = xmm0 + 放到别人不支持 AVX 的电脑上没法运行。 数组清零:自动调用标准库的 memset memcpy 同理,不必为了高效,手动改 写成对 memcpy/memset 的调用,影响 可读性。编译器会自动分析你是在做拷贝 或是清零,并优化成对标准库这俩的调用 。 从 0 到 1024 填充: SIMD 加速 paddd :四个 int 的加法 movdqa :加载四个 int 从 0 到 1024
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    MySQL MySQL 技巧分 技巧分 享 享 MySQL MySQL 技巧分享 技巧分享 常用技巧 常用技巧  使用 使用 Explain/ DESC Explain/ DESC 来分析 来分析 SQL SQL 的执行情况 的执行情况  使用 使用 SHOW PROCESSLIST SHOW PROCESSLIST 来查看当前 来查看当前 MySQL MySQL 服务器线 服务器线 MySQL Slow Log 分析工具 分析工具  mysqldumpslow - mysql mysqldumpslow - mysql 官方提供的慢查询日志分析 官方提供的慢查询日志分析 工具 工具  mysqlsla - hackmysql.com mysqlsla - hackmysql.com 推出的一款日志分析工具 推出的一款日志分析工具 ,功能 ,功能
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    二级缓存有 256 KB , 6 个物理核心每个都有一个, 总共 1.5 MB 。 • 三级缓存由各个物理核心共享,总共 12 MB 。 通过图形界面查看拓扑结构: lstopo 根据我们缓存的大小分析刚刚的图表 • 也可以看到刚刚两个出现转折的点,也是在 二级缓存和三级缓存的大小附近。 • 因此,数据小到装的进二级缓存,则最大带 宽就取决于二级缓存的带宽。稍微大一点则 只能装到三级缓存,就取决于三级缓存的带 实战案例:矩阵乘法 • 分析访存规律: • a(i, j) 始终在一个地址不动(一般)。 • b(i, t) 每次跳跃 n 间隔的访问(坏)。 • c(t, j) 连续的顺序访问(好)。 • 因为存在不连续的 b 和一直不动的 a , 导致矢量化失败,一次只能处理一个标量 , CPU 也无法启动指令级并行( ILP )。 解决:寄存器分块(类似于循环分块) • 分析访存规律: • a(i
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    这样,在 cudaDeviceSynchronize() 以后 ,应该可以获取数据了吧? • 结果令人失望,尽管给 kernel 传了指向 ret 的指针,但 ret 的值并没有被改写成 功。 分析返回的错误代码 • CUDA 的函数,如 cudaDeviceSynchronize() 。 • 他们出错时,并不会直接终止程序,也不会抛出 C++ 的异常,而是返回一个错误代码,告诉你出的具体什么 没有冲突,并行访问↓ 出现冲突,串行访问↓ 回到矩阵转置的案例:如何解决区块冲突? • 而刚刚那个矩阵转置的例子,这里的 blockSize 是 32 。可以看到第一个对 tmp 的访问是没冲突的。 • 而分析一下第二个对 tmp 的访问: threadIdx=(0,0) 的线程 0 会访问 tmp[0] 位于 bank 0 ; threadIdx=(0,1) 的线程 1 会访问 tmp[32] 也位于 的板块共享内存,线程之 间自动并行,没有像 CPU 那样用循环。 下一课主题? GPU vs CPU • cudaStream 异步编程(流水线式并行) • Nsight profiler 性能分析(和 Vtune 类似) • texture 与 constant 内存(为啥要他们?) • 动态内存分配( GPU 上调用 malloc/free ) • curand 、 cufft 、 cublas
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
游人RustCCAtlasGraphZadig面向开发开发者原生DevOps平台产品使用手册使用手册C++高性性能高性能并行编程优化课件霍琳2023RustChinaConfRust胡宇rust分布布式分布式账务系统04MySQL0708
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩