 Rust分布式账务系统 - 胡宇第三届中国 Rust 开发者大会 Rust 构建分布式账务系统 在 Fintech 公司落地 Rust 项目的经验分享 Airwalle x 胡宇 Airwallex 我们是一家跨境支付领域的 Fintech 独角兽 关于我们 E2 轮 Fintech 独角兽,业务遍布全球 关于我们: Airwallex 墨尔本 新加坡 伦敦 深圳 香港 北京 旧金山 上海 东京 提供高效,低成本的数字银行服务 关于我们: Airwallex 从设计架构到实现细节 项目介绍 分布式账务系统 Fintech 互联网 正确性 bug= 资损 bug 不可怕,快速迭代 可靠性 丢数据 = 资损 允许数据丢失 性能 超低延迟 + 高吞吐 超高吞吐 交易日志 审计,监管 调试使用 分布式账务系统 Fintech 领域中的软件与互联网软件的不同 需求分析 支付处理: ● 高可用:在部分节点失效的情况下,依旧可以提供正确的 服务 超低延迟:实时交易,超低响应延迟 水平扩展性:利用分布式事务实现钱包集群的的水平扩 展,应对高达 100 万 TPS 的流量 可演化性:业务逻辑与底层 API 解耦,当业务发生改变 时,底层 API 不用改变 分布式账务系统 设计理念 - Rust 是我们可靠的基石 分布式账务系统 存算分离 API 解耦 读写分离 层级账号 Rust ● 事务层与账户层分0 码力 | 27 页 | 12.60 MB | 1 年前3 Rust分布式账务系统 - 胡宇第三届中国 Rust 开发者大会 Rust 构建分布式账务系统 在 Fintech 公司落地 Rust 项目的经验分享 Airwalle x 胡宇 Airwallex 我们是一家跨境支付领域的 Fintech 独角兽 关于我们 E2 轮 Fintech 独角兽,业务遍布全球 关于我们: Airwallex 墨尔本 新加坡 伦敦 深圳 香港 北京 旧金山 上海 东京 提供高效,低成本的数字银行服务 关于我们: Airwallex 从设计架构到实现细节 项目介绍 分布式账务系统 Fintech 互联网 正确性 bug= 资损 bug 不可怕,快速迭代 可靠性 丢数据 = 资损 允许数据丢失 性能 超低延迟 + 高吞吐 超高吞吐 交易日志 审计,监管 调试使用 分布式账务系统 Fintech 领域中的软件与互联网软件的不同 需求分析 支付处理: ● 高可用:在部分节点失效的情况下,依旧可以提供正确的 服务 超低延迟:实时交易,超低响应延迟 水平扩展性:利用分布式事务实现钱包集群的的水平扩 展,应对高达 100 万 TPS 的流量 可演化性:业务逻辑与底层 API 解耦,当业务发生改变 时,底层 API 不用改变 分布式账务系统 设计理念 - Rust 是我们可靠的基石 分布式账务系统 存算分离 API 解耦 读写分离 层级账号 Rust ● 事务层与账户层分0 码力 | 27 页 | 12.60 MB | 1 年前3
 新一代分布式高性能图数据库的构建 - 沈游人新一代分布式高性能图数据库的构建 北京海致星图科技有限公司 2023-06-18 沈游人 数据库与大数据专场 海致简介—企业级知识图谱开创者 专业顶尖技术团队支撑 超 700 人团队,其中 80% 为技术人员,创始团队在完成全球第一个中文知 识图谱网站研发后,探索知识图谱技术在企业领域的应用。 2021 年,海致院 士专家工作站成立,站内清华大学计算机博士生占比达 90% 以上。 实时风控对图库的性能挑战( OLTP 毫秒级响应) • 海致图平台产品服务于金融、政府行业有大量业务经验积累(接近客户需求) • 现有开源产品无法满足要求(受限于基础架构设计,优化性能有限) 新一代分布式图数据库需具备的特性 特性 信 雅 达 • 高可用 • 一致性(事 务) • 高性能 • 低资源消耗 • 易用 • 功能丰富 AtlasGraph 关键特性 云原生 Cloud-Native ,可扩展的分析引擎支持更复 杂的数据挖掘和机器学习场景 MPP Massively Parallel Processing 架构,大规模集群 分布式存储及并行计 算, Shared Nothing 模式支 持存储计算分离 高性能 基于 Rust 开发的分布式存储引 擎及图计算引擎,精细的内存 管理设计,内置索引系统,支 持毫秒级的并发查询响应速度 易用 AQL(Atlas Graph Query0 码力 | 38 页 | 24.68 MB | 1 年前3 新一代分布式高性能图数据库的构建 - 沈游人新一代分布式高性能图数据库的构建 北京海致星图科技有限公司 2023-06-18 沈游人 数据库与大数据专场 海致简介—企业级知识图谱开创者 专业顶尖技术团队支撑 超 700 人团队,其中 80% 为技术人员,创始团队在完成全球第一个中文知 识图谱网站研发后,探索知识图谱技术在企业领域的应用。 2021 年,海致院 士专家工作站成立,站内清华大学计算机博士生占比达 90% 以上。 实时风控对图库的性能挑战( OLTP 毫秒级响应) • 海致图平台产品服务于金融、政府行业有大量业务经验积累(接近客户需求) • 现有开源产品无法满足要求(受限于基础架构设计,优化性能有限) 新一代分布式图数据库需具备的特性 特性 信 雅 达 • 高可用 • 一致性(事 务) • 高性能 • 低资源消耗 • 易用 • 功能丰富 AtlasGraph 关键特性 云原生 Cloud-Native ,可扩展的分析引擎支持更复 杂的数据挖掘和机器学习场景 MPP Massively Parallel Processing 架构,大规模集群 分布式存储及并行计 算, Shared Nothing 模式支 持存储计算分离 高性能 基于 Rust 开发的分布式存储引 擎及图计算引擎,精细的内存 管理设计,内置索引系统,支 持毫秒级的并发查询响应速度 易用 AQL(Atlas Graph Query0 码力 | 38 页 | 24.68 MB | 1 年前3
 谈谈MYSQL那点事应用优化 应用优化 MySQL MySQL 优化方式 优化方式 影响性能的因素 影响性能的因素 应用程序 应用程序 查询 查询 事务管理 事务管理 数据库设计 数据库设计 数据分布 数据分布 网络 网络 操作系统 操作系统 硬件 硬件  使用好的硬件,更快的硬盘、大内存、多核 使用好的硬件,更快的硬盘、大内存、多核 CPU CPU ,专业的 ,专业的 存储服务器( 类型的索引(唯一索引)  大文本字段不建立为索引,如果要对大文本字段进行检索, 大文本字段不建立为索引,如果要对大文本字段进行检索, 可以考虑全文索引 可以考虑全文索引  频繁更新的列不适合建立过多索引 频繁更新的列不适合建立过多索引 应用优化 应用优化 索引建立原则(二) 索引建立原则(二)  order by order by 字句中的字段, 字句中的字段, where where0 码力 | 38 页 | 2.04 MB | 1 年前3 谈谈MYSQL那点事应用优化 应用优化 MySQL MySQL 优化方式 优化方式 影响性能的因素 影响性能的因素 应用程序 应用程序 查询 查询 事务管理 事务管理 数据库设计 数据库设计 数据分布 数据分布 网络 网络 操作系统 操作系统 硬件 硬件  使用好的硬件,更快的硬盘、大内存、多核 使用好的硬件,更快的硬盘、大内存、多核 CPU CPU ,专业的 ,专业的 存储服务器( 类型的索引(唯一索引)  大文本字段不建立为索引,如果要对大文本字段进行检索, 大文本字段不建立为索引,如果要对大文本字段进行检索, 可以考虑全文索引 可以考虑全文索引  频繁更新的列不适合建立过多索引 频繁更新的列不适合建立过多索引 应用优化 应用优化 索引建立原则(二) 索引建立原则(二)  order by order by 字句中的字段, 字句中的字段, where where0 码力 | 38 页 | 2.04 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 07 深入浅出访存优化float a[n]; 可以在栈上分配有 n 个元素的一维数组。 • 通过 a[i] 访问第 i 个元素。 • float a[n][m]; 可以在栈上分配 n 行 m 列的二维数组。 • 通过 a[i][j] 访问第 i 行,第 j 列的元素。 等一下……内存是一维的,为什么可以分配二维的数组? • 众所周知,内存是一维的,因此任何二维数组,都必须被扁平化,才能储存在内存中。 • 对于 float 可以在栈上分配有 n 个元素的一维数组。 • 通过 a[i] 访问第 i 个元素。 • array C++高性能并行编程与优化 -  课件 - 07 深入浅出访存优化float a[n]; 可以在栈上分配有 n 个元素的一维数组。 • 通过 a[i] 访问第 i 个元素。 • float a[n][m]; 可以在栈上分配 n 行 m 列的二维数组。 • 通过 a[i][j] 访问第 i 行,第 j 列的元素。 等一下……内存是一维的,为什么可以分配二维的数组? • 众所周知,内存是一维的,因此任何二维数组,都必须被扁平化,才能储存在内存中。 • 对于 float 可以在栈上分配有 n 个元素的一维数组。 • 通过 a[i] 访问第 i 个元素。 • array- , m> a; 可以在栈上分配 n 行 m 列的二维数组。 • 通过 a[i][j] 访问第 i 行,第 j 列的元素。 • array 和 C 语言的 [] 数组相比,好处是作为参数传入时不会退化成指针。 C 语言动态数组 • float *a = malloc(n * • 通过 a[i] 访问第 i 个元素。 • float *a = malloc(n * m * sizeof(float)); 可以在堆上分配 n 行 m 列的二维数组。 • 通过 a[i * m + j] 访问第 i 行,第 j 列的元素。 • 释放时,统一用 free(a) • 注意到:动态的数组,因为编译器光从指针没办法推断出列数 m ,因此要手动扁平化。 C++ 动态数组 • 0 码力 | 147 页 | 18.88 MB | 1 年前3
 CeresDB Rust 生产实践 任春韶协议支持  基于 InfluxDB 单机引擎研发 分布式方案  OpenTSDB 协议  内存时序数据库  存储计算分离架构  分级存储  永久代  CeresDB 开源 2022.6 2023.3  开源版本 CeresDB 开始研 发 2023.6  1.2.2 版本发布  优化了写入性能  优化了分布式方案 CeresDB – 目标 解决时间线高基数问题 解决时间线高基数问题 • 能高效处理好 APM 型时序数据 • 同时能高效处理好高基数时间线场景 提供原生分布式方案 • 大规模部署 • 提供高可用、高可靠的服务 • 支持水平扩容 • 支持高效的分布式查询 - Tokio Preemption - Future Cancellation Rust 生产实践 生产实践 – Tokio 为什么使用 Tokio ? 1. 业界使用最广泛,测试齐全。0 码力 | 22 页 | 6.95 MB | 1 年前3 CeresDB Rust 生产实践 任春韶协议支持  基于 InfluxDB 单机引擎研发 分布式方案  OpenTSDB 协议  内存时序数据库  存储计算分离架构  分级存储  永久代  CeresDB 开源 2022.6 2023.3  开源版本 CeresDB 开始研 发 2023.6  1.2.2 版本发布  优化了写入性能  优化了分布式方案 CeresDB – 目标 解决时间线高基数问题 解决时间线高基数问题 • 能高效处理好 APM 型时序数据 • 同时能高效处理好高基数时间线场景 提供原生分布式方案 • 大规模部署 • 提供高可用、高可靠的服务 • 支持水平扩容 • 支持高效的分布式查询 - Tokio Preemption - Future Cancellation Rust 生产实践 生产实践 – Tokio 为什么使用 Tokio ? 1. 业界使用最广泛,测试齐全。0 码力 | 22 页 | 6.95 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 14 C++ 标准库系列课 - 你所不知道的 set 容器中插入元素 • 可以通过调用 insert 往 set 中添加一个元素。 • 用户无需关心插入的位置, 例如插入元素 3 时, set 会 自动插入到 2 和 4 之间, 从而使元素总是从小到大排 列。 • pair C++高性能并行编程与优化 -  课件 - 14 C++ 标准库系列课 - 你所不知道的 set 容器中插入元素 • 可以通过调用 insert 往 set 中添加一个元素。 • 用户无需关心插入的位置, 例如插入元素 3 时, set 会 自动插入到 2 和 4 之间, 从而使元素总是从小到大排 列。 • pair- insert(int val); 向 set 中插入元素 • 刚刚说过 set 具有自动去重 的功能,如果插入的元素已 经在 set 中存在,则不会完 一样。虽然你可能注意到这 里的刚好和插入的顺序相反 ?巧合而已,具体怎么顺序 是和 glibc 实现有关的。 • set 基于红黑树实现,相当 于二分查找 树, unordered_set 基于散 列哈希表实现,正是哈希函 数导致了随机的顺序。 不同版本的 set 容器比较 类型 去重 有序 查找 插入 vector × × O(n) O(1) ~ O(n) set √ √ O(logn) 0 码力 | 83 页 | 10.23 MB | 1 年前3
 GPU Resource Management On JDOS常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态0 码力 | 11 页 | 13.40 MB | 1 年前3 GPU Resource Management On JDOS常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态0 码力 | 11 页 | 13.40 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 15 C++ 系列课:字符与字符串其实比 vector 多一个负担:需要 额外一个字节的空间来存放 ‘ \0’ 。 string 的小字符串优化 • string 的 capacity 函数也经过了特殊处理。 string 内存分布示意图 _M_dataplus._M_p allocator _M_string_length _M_allocated_capacity _M_local_buf (unused) 因此 _M_local_buf 的首地址。 不过对于大字符串,这多出来的 8 字节 (unused) 是完全浪费掉的,但也不亏,就当是为了对齐到 32 字节而故意留的 padding 了。 vector 内存分布示意图 _M_start allocator _M_finish _M_end_of_storage 因此 sizeof(vector) 会得到 24 字节 C++ 的 vector 采用了0 码力 | 162 页 | 40.20 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 15 C++ 系列课:字符与字符串其实比 vector 多一个负担:需要 额外一个字节的空间来存放 ‘ \0’ 。 string 的小字符串优化 • string 的 capacity 函数也经过了特殊处理。 string 内存分布示意图 _M_dataplus._M_p allocator _M_string_length _M_allocated_capacity _M_local_buf (unused) 因此 _M_local_buf 的首地址。 不过对于大字符串,这多出来的 8 字节 (unused) 是完全浪费掉的,但也不亏,就当是为了对齐到 32 字节而故意留的 padding 了。 vector 内存分布示意图 _M_start allocator _M_finish _M_end_of_storage 因此 sizeof(vector) 会得到 24 字节 C++ 的 vector 采用了0 码力 | 162 页 | 40.20 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 09 CUDA C++ 流体仿真实战各维度上的大小通过 cudaExtent 指定,方 便起见我们的 C++ 封装类用了 uint3 表示 大小。 • GPU 的多维数组有特殊的数据排布来保障 访存的高效,和我们 CPU 那样简单地行主 序或列主序(如 a[x + nx * y] )的多维数组 不一样。 • 随后可用 cudaMemcpy3D 在 GPU 的三 维数组和 CPU 的三维数组之间拷贝数据。 CUDA 表面对象:封装 •0 码力 | 58 页 | 14.90 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 09 CUDA C++ 流体仿真实战各维度上的大小通过 cudaExtent 指定,方 便起见我们的 C++ 封装类用了 uint3 表示 大小。 • GPU 的多维数组有特殊的数据排布来保障 访存的高效,和我们 CPU 那样简单地行主 序或列主序(如 a[x + nx * y] )的多维数组 不一样。 • 随后可用 cudaMemcpy3D 在 GPU 的三 维数组和 CPU 的三维数组之间拷贝数据。 CUDA 表面对象:封装 •0 码力 | 58 页 | 14.90 MB | 1 年前3
 Await-Tree Async Rust 可观测性的灵丹妙药 -  赵梓淇RisingWave 中的应用 • 云原生 SQL 流式数据库 • risingwave.com • GitHub 4.5k Stars • “Materialized View” • 计算:分布式流计算任务,实时增量维护 • 存储: S3 上的 Shared-storage 存储状态和数据 Await Tree 在 RisingWave 中的应用 • 技术挑战 • 计算任务需长期执行,稳定性要求高0 码力 | 37 页 | 8.60 MB | 1 年前3 Await-Tree Async Rust 可观测性的灵丹妙药 -  赵梓淇RisingWave 中的应用 • 云原生 SQL 流式数据库 • risingwave.com • GitHub 4.5k Stars • “Materialized View” • 计算:分布式流计算任务,实时增量维护 • 存储: S3 上的 Shared-storage 存储状态和数据 Await Tree 在 RisingWave 中的应用 • 技术挑战 • 计算任务需长期执行,稳定性要求高0 码力 | 37 页 | 8.60 MB | 1 年前3
共 12 条
- 1
- 2













