 C++高性能并行编程与优化 -  课件 - 17 由浅入深学习 map 容器乍看之下好像没错,运行结果也是正确的,但 这只是碰巧你的 items 里存在 “ hello” 而已, 如果哪天 “ hello” 不存在了他也不会报错而是 默默创建然后返回 0 ,后患无穷! • 这种代码就像被抽空的叠叠乐一样危险重重, 稍有一根稻草就能压垮骆驼,而且都不知道是 这根稻草压垮的,难以溯源。 错误示范 • 假如我这里不小心手一滑,把 “ hello” 打错成了 “ hell” } • } • 封装成函数方便使用: • auto val = map_get(m, “key”, “default”); • ss map 常用函数不同情况下的行为分析 类型 C++ 代码 key 已存在 key 不存在 读取 val = m.at(key) 读取这个值 抛出 out_of_range 异常 val = m[key] 读取这个值 创建并零初始化(默认构造函数) 写入 默默放弃 小彭老师四定律: 读取,要用 at 。 写入,要用 [] 。 判断存在,用 count 。 删除,用 erase 。 这四个已经够用了。 map 常用函数不同情况下的行为分析 类型 C++ 代码 key 已存在 key 不存在 读取 val = m.at(key) 读取这个值 抛出 out_of_range 异常 val = m[key] 读取这个值 创建并零初始化(默认构造函数) 写入0 码力 | 90 页 | 8.76 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 17 由浅入深学习 map 容器乍看之下好像没错,运行结果也是正确的,但 这只是碰巧你的 items 里存在 “ hello” 而已, 如果哪天 “ hello” 不存在了他也不会报错而是 默默创建然后返回 0 ,后患无穷! • 这种代码就像被抽空的叠叠乐一样危险重重, 稍有一根稻草就能压垮骆驼,而且都不知道是 这根稻草压垮的,难以溯源。 错误示范 • 假如我这里不小心手一滑,把 “ hello” 打错成了 “ hell” } • } • 封装成函数方便使用: • auto val = map_get(m, “key”, “default”); • ss map 常用函数不同情况下的行为分析 类型 C++ 代码 key 已存在 key 不存在 读取 val = m.at(key) 读取这个值 抛出 out_of_range 异常 val = m[key] 读取这个值 创建并零初始化(默认构造函数) 写入 默默放弃 小彭老师四定律: 读取,要用 at 。 写入,要用 [] 。 判断存在,用 count 。 删除,用 erase 。 这四个已经够用了。 map 常用函数不同情况下的行为分析 类型 C++ 代码 key 已存在 key 不存在 读取 val = m.at(key) 读取这个值 抛出 out_of_range 异常 val = m[key] 读取这个值 创建并零初始化(默认构造函数) 写入0 码力 | 90 页 | 8.76 MB | 1 年前3
 Zadig 面向开发者的云原生 DevOps 平台运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN 代码变更 xN 配置变更 xN 部署测试环境 xN 部署预发环境 服务一:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务二:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务三:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 以前:面向代码片段的串行交付 现在:面向多个服务编排的产品级自动化并行交付 服务定义 | 构建 | 部署 | 测试 | 发布 代码一: 代码编写 | 构建 | 部署 | 测试 | 发布 代码二: 代码编写 | 构建 | 部署 | 测试 | 发布 代码三: 代码编写 | 构建 | 部署 |0 码力 | 59 页 | 81.43 MB | 1 年前3 Zadig 面向开发者的云原生 DevOps 平台运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN 代码变更 xN 配置变更 xN 部署测试环境 xN 部署预发环境 服务一:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务二:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务三:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 以前:面向代码片段的串行交付 现在:面向多个服务编排的产品级自动化并行交付 服务定义 | 构建 | 部署 | 测试 | 发布 代码一: 代码编写 | 构建 | 部署 | 测试 | 发布 代码二: 代码编写 | 构建 | 部署 | 测试 | 发布 代码三: 代码编写 | 构建 | 部署 |0 码力 | 59 页 | 81.43 MB | 1 年前3
 Zadig 产品使用手册内部推广难度极高 做完后价值难被证明 通用性、可扩展性、技术先进性强,可以灵活 广泛接入各种技术和业务场景 基于代码管理的 DevOps 方案 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 开发 Zadig 核心特性: 运维 真正意义的持续交付:以工程师体验为核心,价值交付为理念,完成需求到发布的全路径。 随时调用工程基线提供的能力、 产品视角开发交付、团队高效协 同、稳定迭代 产研数字化过程数据透明、关键 指标易抽取、有能力合理调动资 源、随时决策响应客户需求 碎片化 研 发模 式 产研全流程拉通需求到上线所需的代码、服务、配置和数据的一致性交付 Jira 飞书 项管 其他 自测 环境 Argo K8s JFrog YAML 产品 开 发 测 试 运维 产研运一体化 解决方案 免运维模板库 核心场景介绍:不同角色工程师基于统一协作平面,操作使用自动化工作流和云原生环境 面向角色 功能描述 工作流名称样例 具体配置 开发工程师 CI 过程 project-unit-test project-scan • 单元测试、代码扫描 更新日常开发环境及 dev 业务配 置 project-dev-workflow • 构建、配置变更( Apollo/Nacos )、数 据变更、部署、冒烟测试、项目管理任务 变更 测试工程师0 码力 | 52 页 | 22.95 MB | 1 年前3 Zadig 产品使用手册内部推广难度极高 做完后价值难被证明 通用性、可扩展性、技术先进性强,可以灵活 广泛接入各种技术和业务场景 基于代码管理的 DevOps 方案 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 开发 Zadig 核心特性: 运维 真正意义的持续交付:以工程师体验为核心,价值交付为理念,完成需求到发布的全路径。 随时调用工程基线提供的能力、 产品视角开发交付、团队高效协 同、稳定迭代 产研数字化过程数据透明、关键 指标易抽取、有能力合理调动资 源、随时决策响应客户需求 碎片化 研 发模 式 产研全流程拉通需求到上线所需的代码、服务、配置和数据的一致性交付 Jira 飞书 项管 其他 自测 环境 Argo K8s JFrog YAML 产品 开 发 测 试 运维 产研运一体化 解决方案 免运维模板库 核心场景介绍:不同角色工程师基于统一协作平面,操作使用自动化工作流和云原生环境 面向角色 功能描述 工作流名称样例 具体配置 开发工程师 CI 过程 project-unit-test project-scan • 单元测试、代码扫描 更新日常开发环境及 dev 业务配 置 project-dev-workflow • 构建、配置变更( Apollo/Nacos )、数 据变更、部署、冒烟测试、项目管理任务 变更 测试工程师0 码力 | 52 页 | 22.95 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 08 CUDA 开启的 GPU 编程CUDA 开启的 GPU 编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 前置条件 • 学过 C/C++ 语言编程。 • 理解 malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 CUDA 和 C++ 的关 系就像 C++ 和 C 的关系一样,大部分都兼容 ,因此能很方便地重用 C++ 现有的任何代码库 ,引用 C++ 头文件等。 • host 代码和 device 代码写在同一个文件内,这 是 OpenCL 做不到的。 编写一段在 GPU 上运行的代码 • 定义函数 kernel ,前面加上 __global__ 修 饰符,即可让他在 GPU 上执行。 • 不过调用 上执行 printf 了。 • 这里的 kernel 函数在 GPU 上执行,称为核 函数,用 __global__ 修饰的就是核函数。 没有反应?同步一下! • 然而如果直接编译运行刚刚那段代码,是不会打印出 Hello, world! 的。 • 这是因为 GPU 和 CPU 之间的通信,为了高效,是异 步的。也就是 CPU 调用 kernel<<<1, 1>>>() 后,并不 会立即在0 码力 | 142 页 | 13.52 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 08 CUDA 开启的 GPU 编程CUDA 开启的 GPU 编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 前置条件 • 学过 C/C++ 语言编程。 • 理解 malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 CUDA 和 C++ 的关 系就像 C++ 和 C 的关系一样,大部分都兼容 ,因此能很方便地重用 C++ 现有的任何代码库 ,引用 C++ 头文件等。 • host 代码和 device 代码写在同一个文件内,这 是 OpenCL 做不到的。 编写一段在 GPU 上运行的代码 • 定义函数 kernel ,前面加上 __global__ 修 饰符,即可让他在 GPU 上执行。 • 不过调用 上执行 printf 了。 • 这里的 kernel 函数在 GPU 上执行,称为核 函数,用 __global__ 修饰的就是核函数。 没有反应?同步一下! • 然而如果直接编译运行刚刚那段代码,是不会打印出 Hello, world! 的。 • 这是因为 GPU 和 CPU 之间的通信,为了高效,是异 步的。也就是 CPU 调用 kernel<<<1, 1>>>() 后,并不 会立即在0 码力 | 142 页 | 13.52 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 04 从汇编角度看编译器优化从汇编角度看编译器优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1 rsi 并不是指针 整数加常数乘整数:都可以被优化成 leal 因为这种线性变换在地址索引 中很常见,所以被 x86 做成 了单独一个指令。这里尽管不 是地址,但同样可以利用 lea 指令简化生成的代码大小。 eax = rdi + rsi * 8 指针访问对象:线性访问地址 rsi = (int64_t)esi eax = *(int *)(rdi + rsi * 4) 为什么乘以 4 ?因为访问的 素加法。因此 SIMD 又被称为矢量,而原始的一次只能处理 1 个 float 的方式,则称为 标量。 • 在一定条件下,编译器能够把一个处理标量 float 的代码,转换成一个利用 SIMD 指令的 ,处理矢量 float 的代码,从而增强你程序的吞吐能力! • 通常认为利用同时处理 4 个 float 的 SIMD 指令可以加速 4 倍。但是如果你的算法不 适合 SIMD ,则可能加速达不到0 码力 | 108 页 | 9.47 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 04 从汇编角度看编译器优化从汇编角度看编译器优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1 rsi 并不是指针 整数加常数乘整数:都可以被优化成 leal 因为这种线性变换在地址索引 中很常见,所以被 x86 做成 了单独一个指令。这里尽管不 是地址,但同样可以利用 lea 指令简化生成的代码大小。 eax = rdi + rsi * 8 指针访问对象:线性访问地址 rsi = (int64_t)esi eax = *(int *)(rdi + rsi * 4) 为什么乘以 4 ?因为访问的 素加法。因此 SIMD 又被称为矢量,而原始的一次只能处理 1 个 float 的方式,则称为 标量。 • 在一定条件下,编译器能够把一个处理标量 float 的代码,转换成一个利用 SIMD 指令的 ,处理矢量 float 的代码,从而增强你程序的吞吐能力! • 通常认为利用同时处理 4 个 float 的 SIMD 指令可以加速 4 倍。但是如果你的算法不 适合 SIMD ,则可能加速达不到0 码力 | 108 页 | 9.47 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 01 学 C++ 从 CMake 学起i_blend ) 关于作者(再续) • 主导 Zeno 节点仿真框架的开发( https://github.com/zenustech/zeno ) 什么是编译器 • 编译器,是一个根据源代码生成机器码的程序。 • > g++ main.cpp -o a.out • 该命令会调用编译器程序 g++ ,让他读取 main.cpp 中的字符串(称为源码),并根据 C+ + 标准生成相应的机器指令码,输出到 C++ Fortran GNU gcc g++ gfortran LLVM clang clang++ flang 多文件编译与链接 • 单文件编译虽然方便,但也有如下缺点: 1. 所有的代码都堆在一起,不利于模块化和理解。 2. 工程变大时,编译时间变得很长,改动一个地方就得全部重新编译。 • 因此,我们提出多文件编译的概念,文件之间通过符号声明相互引用。 • > g++ -c hello 的,我们想把这些共用 的功能做成一个库,方便大家一起共享。 • 库中的函数可以被可执行文件调用,也可以被其他库文件调用。 • 库文件又分为静态库文件和动态库文件。 • 其中静态库相当于直接把代码插入到生成的可执行文件中,会导致体积变大,但是只需要 一个文件即可运行。 • 而动态库则只在生成的可执行文件中生成“插桩”函数,当可执行文件被加载时会读取指定目 录中的 .dll 文件,加载到0 码力 | 32 页 | 11.40 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 01 学 C++ 从 CMake 学起i_blend ) 关于作者(再续) • 主导 Zeno 节点仿真框架的开发( https://github.com/zenustech/zeno ) 什么是编译器 • 编译器,是一个根据源代码生成机器码的程序。 • > g++ main.cpp -o a.out • 该命令会调用编译器程序 g++ ,让他读取 main.cpp 中的字符串(称为源码),并根据 C+ + 标准生成相应的机器指令码,输出到 C++ Fortran GNU gcc g++ gfortran LLVM clang clang++ flang 多文件编译与链接 • 单文件编译虽然方便,但也有如下缺点: 1. 所有的代码都堆在一起,不利于模块化和理解。 2. 工程变大时,编译时间变得很长,改动一个地方就得全部重新编译。 • 因此,我们提出多文件编译的概念,文件之间通过符号声明相互引用。 • > g++ -c hello 的,我们想把这些共用 的功能做成一个库,方便大家一起共享。 • 库中的函数可以被可执行文件调用,也可以被其他库文件调用。 • 库文件又分为静态库文件和动态库文件。 • 其中静态库相当于直接把代码插入到生成的可执行文件中,会导致体积变大,但是只需要 一个文件即可运行。 • 而动态库则只在生成的可执行文件中生成“插桩”函数,当可执行文件被加载时会读取指定目 录中的 .dll 文件,加载到0 码力 | 32 页 | 11.40 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南现代 CMake 进阶指南 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么要学习现代 CMake ? • 现代 CMake 指的是 CMake 3.x 。 • 古代 CMake 指的是 CMake build 目录下生成本地构建系统能识别的项目文件( Makefile 或是 .sln ) • 第二步是 cmake --build build ,称为构建阶段( build ),这时才实际调用编译器来编译代码 • 在配置阶段可以通过 -D 设置缓存变量。第二次配置时,之前的 -D 添加仍然会被保留。 • cmake -B build -DCMAKE_INSTALL_PREFIX=/opt/openvdb-8 为空字符串,这时相当于 Debug 。 各种构建模式在编译器选项上的区别 • 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方面,由于代码优化后不与源代码一致,此模式下 一般会丢失大量的调试信息。 1. Debug: `-O0 -g` 2. Release: `-O3 -DNDEBUG` 3. MinSizeRel:0 码力 | 166 页 | 6.54 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 11 现代 CMake 进阶指南现代 CMake 进阶指南 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么要学习现代 CMake ? • 现代 CMake 指的是 CMake 3.x 。 • 古代 CMake 指的是 CMake build 目录下生成本地构建系统能识别的项目文件( Makefile 或是 .sln ) • 第二步是 cmake --build build ,称为构建阶段( build ),这时才实际调用编译器来编译代码 • 在配置阶段可以通过 -D 设置缓存变量。第二次配置时,之前的 -D 添加仍然会被保留。 • cmake -B build -DCMAKE_INSTALL_PREFIX=/opt/openvdb-8 为空字符串,这时相当于 Debug 。 各种构建模式在编译器选项上的区别 • 在 Release 模式下,追求的是程序的最佳性能表现,在此情况下,编译器会对程序做最大 的代码优化以达到最快运行速度。另一方面,由于代码优化后不与源代码一致,此模式下 一般会丢失大量的调试信息。 1. Debug: `-O0 -g` 2. Release: `-O3 -DNDEBUG` 3. MinSizeRel:0 码力 | 166 页 | 6.54 MB | 1 年前3
 Go读书会第二期go 社区的优秀项目和代 码,看看他们怎么做的 践行哲学,遵循惯例,认清本质,理解原理 Part2 – 项目基础:布局、代码风格与命名 践行哲学,遵循惯例,认清本质,理解原理 每个 gopher 在开启一个 go 项目时都要考虑的事情 • Go 项目布局 • 代码风格 • 命名惯例 Part3 – 语法基础:声明、类型、语句与控制结构 践行哲学,遵循惯例,认清本质,理解原理 • 无类型常量与 iota 的应用 • 定义零值可用的类型 • 通过复合字面值的初始化 • 切片、字符串、 map 的原理、惯 用法与坑 每个 gopher 编写 Go 代码都会用到的 • Go 包导入相关 • 代码块与作用域 • 控制语句的惯用法与坑 Part4 – 语法基础:函数与方法 践行哲学,遵循惯例,认清本质,理解原理 • Init 函数 • 成为“一等公民” • defer Part10 – 工程实践 践行哲学,遵循惯例,认清本质,理解原理 • Go module • 自定义 go 包导入路径 • Go 命令使用(包括代码生成) • 常见的“坑” 构建、部署、代码生成、 Go“ 坑”大检阅 示例代码与勘误 践行哲学,遵循惯例,认清本质,理解原理 • https://github.com/bigwhite/ GoProgrammingFromBeginnerToMaster0 码力 | 26 页 | 4.55 MB | 1 年前3 Go读书会第二期go 社区的优秀项目和代 码,看看他们怎么做的 践行哲学,遵循惯例,认清本质,理解原理 Part2 – 项目基础:布局、代码风格与命名 践行哲学,遵循惯例,认清本质,理解原理 每个 gopher 在开启一个 go 项目时都要考虑的事情 • Go 项目布局 • 代码风格 • 命名惯例 Part3 – 语法基础:声明、类型、语句与控制结构 践行哲学,遵循惯例,认清本质,理解原理 • 无类型常量与 iota 的应用 • 定义零值可用的类型 • 通过复合字面值的初始化 • 切片、字符串、 map 的原理、惯 用法与坑 每个 gopher 编写 Go 代码都会用到的 • Go 包导入相关 • 代码块与作用域 • 控制语句的惯用法与坑 Part4 – 语法基础:函数与方法 践行哲学,遵循惯例,认清本质,理解原理 • Init 函数 • 成为“一等公民” • defer Part10 – 工程实践 践行哲学,遵循惯例,认清本质,理解原理 • Go module • 自定义 go 包导入路径 • Go 命令使用(包括代码生成) • 常见的“坑” 构建、部署、代码生成、 Go“ 坑”大检阅 示例代码与勘误 践行哲学,遵循惯例,认清本质,理解原理 • https://github.com/bigwhite/ GoProgrammingFromBeginnerToMaster0 码力 | 26 页 | 4.55 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 05 C++11 开始的多线程编程C++11 开始的多线程编 程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 温馨提示: 1. 会用到第二讲( RAII 与智能指针)里的知识 2. 课件中一部分代码是基于 C++17 的 个人认为, C++11 中很多特性, 其实可以看做是为了支持多线程而 顺带引入的……如 chrono 、移动 、 lambda 、 RAII…… 第 0 章:时间 C 语言如何处理时间: 当那个线程启动时,就会执行这个 lambda 里的内容。 • 这样就可以一边和用户交互,一边在另一 个线程里慢吞吞下载文件了。 错误:找不到符号 pthread_create • 但当我们直接尝试编译刚才的代码,却在链接时发生了错误。 • 原来 std::thread 的实现背后是基于 pthread 的。 • 解决: CMakeLists.txt 里链接 Threads::Threads 即可: 有了多线程:异步处理请求0 码力 | 79 页 | 14.11 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 05 C++11 开始的多线程编程C++11 开始的多线程编 程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 温馨提示: 1. 会用到第二讲( RAII 与智能指针)里的知识 2. 课件中一部分代码是基于 C++17 的 个人认为, C++11 中很多特性, 其实可以看做是为了支持多线程而 顺带引入的……如 chrono 、移动 、 lambda 、 RAII…… 第 0 章:时间 C 语言如何处理时间: 当那个线程启动时,就会执行这个 lambda 里的内容。 • 这样就可以一边和用户交互,一边在另一 个线程里慢吞吞下载文件了。 错误:找不到符号 pthread_create • 但当我们直接尝试编译刚才的代码,却在链接时发生了错误。 • 原来 std::thread 的实现背后是基于 pthread 的。 • 解决: CMakeLists.txt 里链接 Threads::Threads 即可: 有了多线程:异步处理请求0 码力 | 79 页 | 14.11 MB | 1 年前3
 C++高性能并行编程与优化 -  课件 - 07 深入浅出访存优化深入浅出访存优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound com/content/www/us/en/docs/intrinsics-guide/index.html • 里面有详细说明每个指令对应的汇编,方便理解的伪代码,延迟和花费的时钟周期等。 第 4 章:循环合并法 两个循环体 • 原始的代码第一个循环体执行 a[i] = a[i] * 2 ,等乘法全 部结束了以后,再来一个循环体执行 a[i] = a[i] + 1 。 • 因为第一遍循环过了 ,原本 a[0] 处的缓存早已失效,因此第二遍循环开始 读取 a[0] 时必须重新从主内存读取,然后再次写回主 内存。 • 这种代码在主内存看来, CPU 做的事情相当于:读 + 写 + 读 + 写,每个元素都需要访问四遍内存。 合并两个循环体 • 优化后的代码在同一个循环体里,执行完 a[i] = a[i] * 2 后,立 即执行了 a[i] = a[i] + 1 。 • 因为执行完0 码力 | 147 页 | 18.88 MB | 1 年前3 C++高性能并行编程与优化 -  课件 - 07 深入浅出访存优化深入浅出访存优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound com/content/www/us/en/docs/intrinsics-guide/index.html • 里面有详细说明每个指令对应的汇编,方便理解的伪代码,延迟和花费的时钟周期等。 第 4 章:循环合并法 两个循环体 • 原始的代码第一个循环体执行 a[i] = a[i] * 2 ,等乘法全 部结束了以后,再来一个循环体执行 a[i] = a[i] + 1 。 • 因为第一遍循环过了 ,原本 a[0] 处的缓存早已失效,因此第二遍循环开始 读取 a[0] 时必须重新从主内存读取,然后再次写回主 内存。 • 这种代码在主内存看来, CPU 做的事情相当于:读 + 写 + 读 + 写,每个元素都需要访问四遍内存。 合并两个循环体 • 优化后的代码在同一个循环体里,执行完 a[i] = a[i] * 2 后,立 即执行了 a[i] = a[i] + 1 。 • 因为执行完0 码力 | 147 页 | 18.88 MB | 1 年前3
共 28 条
- 1
- 2
- 3













