Zadig 面向开发者的云原生 DevOps 平台贡献者流程优化 2022 年 9 月 场 景 深 化 能 力 增 强 Helm/K8s YAML/ 托管场景接入流程优化 UX/UI 升级,工程师一线体验优化 推出效能看板,实时客观度量工程数据指标 效 率 优 化 、 开 发 者 体 验 增 强 2023 年 面向生态伙伴开放场景 面向开发者提供 IDE 插件 / 自测环境 通用工作流广泛链接生态赋能开发者 企业解决方案和最佳实践内置 优势、使用场景、解决问题域 Zadig 解决问题域 Zadig 云原生开放性:极简、 0 负担接入 Zadig 业务架构 Zadig 系统架构 1 Zadig 行业方案 对比分析 职能 传统 DevOps 方案 ZadigX 云原生 DevOps 方案 降本提效 组织能力提升 业务负责人 研发不透明,规划凭感觉: • 发版时间靠运气 • 团队熬夜冲进度 研发透明化:不同项目清晰可见的效率、质量、进度 进度管理:根据团队客观数据,预测和确定项目规划 迭代进度一目了然 项目从无到有可核算 管理有数据科学依据 解放管理,更多时间花在 业务创新 平台运维 业务压力大,能力建设缓慢: • 大量工作花在工具链维护 • 项目间依赖复杂,环境管理难 • 交付版本依赖工单,发布风险高 • 公共资源 / 业务资源利用率低 赋能多业务:一个平台解决了多异构项目的管理和规范 团队高效协作:定义团队角色工作流模板,随时可用云上环境 价值0 码力 | 59 页 | 81.43 MB | 1 年前3
Zadig 产品使用手册流程平台 围绕 Jenkins 或 CI/CD 工具 搭建流程串接胶水平台 局限性大扩展性差 内部推广难度极高 做完后价值难被证明 通用性、可扩展性、技术先进性强,可以灵活 广泛接入各种技术和业务场景 基于代码管理的 DevOps 方案 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 自助运行、系统化管理、自动化 程度高、测试有效性提升、质量 有保障、横向赋能、技能提升 随时调用工程基线提供的能力、 产品视角开发交付、团队高效协 同、稳定迭代 产研数字化过程数据透明、关键 指标易抽取、有能力合理调动资 源、随时决策响应客户需求 碎片化 研 发模 式 产研全流程拉通需求到上线所需的代码、服务、配置和数据的一致性交付 Jira 飞书 项管 其他 自测 环境 Argo 境 面向角色 功能描述 工作流名称样例 具体配置 开发工程师 CI 过程 project-unit-test project-scan • 单元测试、代码扫描 更新日常开发环境及 dev 业务配 置 project-dev-workflow • 构建、配置变更( Apollo/Nacos )、数 据变更、部署、冒烟测试、项目管理任务 变更 测试工程师 更新测试验证环境 project-sit-workflow0 码力 | 52 页 | 22.95 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅,比如 O(n²) 表示花费时间和数据量的平方成正比。 • 对于并行算法,复杂度的评估则要分为两种: • 时间复杂度:程序所用的总时间(重点) • 工作复杂度:程序所用的计算量(次要) • 这两个指标都是越低越好。时间复杂度决定了快慢,工作复杂度决定了耗电量。 • 通常来说,工作复杂度 = 时间复杂度 * 核心数量 • 1 个核心工作一小时, 4 个核心工作一小时。时间复杂度一样,而后者工作复杂度更高。 为串行的 (如果他们没办法并行调用的话)而其他 filter 可以 和他同时并行运行。这可以应对一些不方便并行,或 者执行前后的数据有依赖,但是可以拆分成多个步骤 ( filter )的复杂业务。 • 还有好处是他无需先把数据全读到一个内存数组里, 可以流式处理数据( on-fly ),节省内存。 • 不过需要注意流水线每个步骤( filter )里的工作量最 好足够大,否则无法掩盖调度0 码力 | 116 页 | 15.85 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化MyClass 内部是 SOA ,而外部仍是一个 vector的 AOS—— 这种内存布局称为 AOSOA 。 • 缺点是必须保证数量是 1024 的整数倍, 而且因为要两次指标索引,随机访问比较 烦。 • 这里的 1024 并非随意选取,而是要让每 个属性 SOA 数组的大小为一个页 ( 4KB )才能最高效,原因稍后会说明。 AOSOA :注意,内部 SOA 的尺寸不宜太小 ndarray<3, int> 声明一个三维整型数组。 这里的 ndarray 通过 a(x, y) 来 索引,看起来像 Fortran ,但是 实际上还是 YX 序,和静态数组 的 a[y][x] 一样的,指标出现的顺 序并无关紧要。 …… ndarray :访问越界问题 • 在物理仿真中,常常需要访问在一个元素附近的几个元素。图 像处理中用到的模糊操作,也需要向上下左右扩散 w 个单位。 • 0 码力 | 147 页 | 18.88 MB | 1 年前3
Rust分布式账务系统 - 胡宇Fintech 公司落地 Rust 项目的经验分享 Airwalle x 胡宇 Airwallex 我们是一家跨境支付领域的 Fintech 独角兽 关于我们 E2 轮 Fintech 独角兽,业务遍布全球 关于我们: Airwallex 墨尔本 新加坡 伦敦 深圳 香港 北京 旧金山 上海 东京 班加罗尔 阿姆斯特丹 西安 马来西亚 币种 50+ 国家 130+ 高可用:在部分节点失效的情况下,依旧可以提供正确的 服务 超低延迟:实时交易,超低响应延迟 水平扩展性:利用分布式事务实现钱包集群的的水平扩 展,应对高达 100 万 TPS 的流量 可演化性:业务逻辑与底层 API 解耦,当业务发生改变 时,底层 API 不用改变 分布式账务系统 设计理念 - Rust 是我们可靠的基石 分布式账务系统 存算分离 API 解耦 读写分离 层级账号 Rust ● 事务层与账户层分 正确性:内存安全,线程安全 ● 可靠性: Raft 共识算法 raft-rs ● 高性能:关键路径无锁单线程 顶层架构 ● Gateway 路由层 ○ 业务 API 到底层 API 的翻 译 ○ 产生转账计划 ● Marker 事务层 ○ 使用业务 id 进行路由 ○ 执行转账计划 ○ 分发账户变动请求 ● Auticuro 账户层 ○ 使用账户 id 进行分区 ○ 执行账户变动请求0 码力 | 27 页 | 12.60 MB | 1 年前3
新一代分布式高性能图数据库的构建 - 沈游人图分析工具集 • 图咨询服务 Source : Graph Aware 图数据库发展趋势 AtlasGraph 研发背景 • 业务对大图分析的诉求(千亿点、万亿边) • 实时风控对图库的性能挑战( OLTP 毫秒级响应) • 海致图平台产品服务于金融、政府行业有大量业务经验积累(接近客户需求) • 现有开源产品无法满足要求(受限于基础架构设计,优化性能有限) 新一代分布式图数据库需具备的特性 的图查询 语言,内置上百种分析函数, 面向分析师友好,拥抱标准, 基于 openCypher 向 ISO GQL 迈进 实时大图 支持万亿节点存储及流式计算 引擎的结合,最新数据实时入 库构图,为在线业务决策分析 提供有力支撑 AtlasGraph 架构及实现 新一代图技术应用特征简介 Takeaway AtlasGraph 架构概览 存储层 副本管理 CRAQ 图原生存储 CPU/GPU 等异构设备训练 • 特殊设计的高性能图算子库 丰富的算法库 • 内置多种 20+ 个 GNN 算法 • 支持同构图 / 异构图 / 属性图 客户的信任 • 上线某银行反欺诈场景 业务效果提升 10%+ 灵活易用的开发平台 • AtlasML Python Library • 集成 Jupyter Notebook 超参数自动优化 • 支持超参数自动调优,解放算 法科学家生产力,避免繁杂的0 码力 | 38 页 | 24.68 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理Pig(pig) 语法 来强制拷贝。 为什么很多面向对象语言,比如 Java ,都没有构造函数全家桶这些概念? • 因为他们的业务需求大多是:打开数据库,增删改查学生数据,打开一个窗口,写入一个 文件,正则匹配是不是电邮地址,应答 HTTP 请求等。 • 这些业务往往都是在和资源打交道,从而基本都是刚刚说的要删除拷贝函数的那一类,解 决这种需求,几乎总是在用 shared_ptr脆简化:一切非基础类型的对象都是浅拷贝,引用计数由垃圾回收机制自动管理。 • 因此,以系统级编程、算法数据结构、高性能计算为主要业务的 C++ ,才发展出了这些思 想,并将拷贝 / 移动 / 指针 / 可变性 / 多线程等概念作为语言基本元素存在。这些在我们的 业务里面是非常重要的,所以不可替代。 • (试图升华文章中心主旨) 扩展阅读关键字 • 限于篇幅,此处放出一些扩展知识供学有余力的同学研究: 0 码力 | 96 页 | 16.28 MB | 1 年前3
谈谈MYSQL那点事用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品 业务实时性要求不是很高,完全可以采用这种弱一致性的设 计架构模式。 中间一致性 如果既不是很强的一致性又不是很弱的一致性,那 么我们就采取中间的策略,就是在同机房再部署一个 S1(R) 尽量不用触发器,特别是在大数据表上 应用优化 应用优化 编写高效的 编写高效的 SQL SQL (三) (三) 更新触发器如果不是所有情况下都需要触发,应根据业务需要加 更新触发器如果不是所有情况下都需要触发,应根据业务需要加 上必要判断条件 上必要判断条件 使用 使用 union all union all 操作代替 操作代替0 码力 | 38 页 | 2.04 MB | 1 年前3
陈东 - 利用Rust重塑移动应用开发-230618and easyuse hardware wallet for the Web3 world 利用 Rust 重塑移动应用开发 Photo / image / chart 采用 Rust 重构业务逻 辑的背景和动机 Performance The same business logic will run on different platforms such as embedded devices target - Call the function on the swift code 利用 Rust 重塑移动应用开发 Photo / image / chart Rust 在 Keystone 业务上的实践 Rust Crypto Core 利用 Rust 重塑移动应用开发 RCC_android RCC_ios https://github.com/KeystoneHQ/rust-crypto-core0 码力 | 22 页 | 2.10 MB | 1 年前3
基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺`voltage` INT, `phase` FLOAT) TAGS ( `groupid` INT, `location` VARCHAR(24)) TDengine - 业务模式 开源版 企业版 云服务版 核心功能开源 • SQL 支持 • 无模式写入 • 缓存 • 流计算 • 数据订阅 • 集群、高可用 高可靠、线性扩展 + 专业技术服务 • 边云数据复制 多种不同协议数据对接,开发复杂度高 • 模块之间关联性不高但模块组成复杂,可维护性差 • 大量设备大量数据归集存储,存储压力大 • 数据总线 / 消息队列消息接入,定制化程度要求高 • 数据业务逻辑自定义需求强 • 一定的实时数据分析能力 taosX - 功能路线图 集群运维 数据接入 流式处理 流式处理 数据分享 开放平台 • Backup/Restore • Replication0 码力 | 29 页 | 2.26 MB | 1 年前3
共 14 条
- 1
- 2













