 Curve支持S3 数据缓存方案© XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3上,在读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chunk大小是固定的(默认64M),所以Inode中采用map Curve支持S3 数据缓存方案© XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3上,在读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chunk大小是固定的(默认64M),所以Inode中采用map- 缓存分离 读写缓存的设计采用的是读写缓存分离的方案。 写缓存一旦flush即释放,读缓存采用可设置的策略进行淘汰(默认LRU),对于小io进行block级别的预读。 即读写缓存相互没影响不相关, 缓存层级 缓存层级分为fs->file->chunk->datacache 4层,通过inodeId找到f 0 码力 | 9 页 | 179.72 KB | 6 月前3
 2.1.1 Golang主动式内存缓存的优化探索之路Golang主动式内存缓存的优化探索之路 安晏伯 学而思网校 技术专家 目 录 问题引入 01 难点攻克 02 主动式内存缓存框架 03 总结 04 问题引入 第一部分 为什么能有极致的性能? 01. 如何优化? 解决了哪些技术难题? 主动式内存缓存 如何优化? 极致的性能 除了网络IO,与Redis有什么区别? 复杂的查询怎么办? 02. 传统的Cache很难 • 复杂的查询场景,内存数据如何高效组织? • 主动式内存缓存,如何保证数据实时性? • 数据太多,内存不够用,如何进行存储扩展? 通过本次分享,可以带来哪些收获? 难点攻克 第二部分 使用内存缓存 数据一致性如何保证? 一致性 01. 缓存如何保证更新,如何与数据库同步 同步、更新  被动方式  缓存过期  定期同步  主动方式  监听数据变化 数据加载,更新 热数据的交换 冷 热 新 系 统 历 史 数 据 冷数据、数据量多 缓存成本大、命中低、收益小 热 数 据 当前系统中的热点数据 命中率高 系 统 新 增 数 据 近期新增数据,较大概率命中 存储空间 缓存性能 冷热可交换,引擎可扩展 06. 冷热数据交换,通过栈式缓存结构,实现多级缓存策略 语言的局限性 07. 基于golang语言,内存对象超过百万量级后出现的GC耗时问题0 码力 | 48 页 | 6.06 MB | 1 年前3 2.1.1 Golang主动式内存缓存的优化探索之路Golang主动式内存缓存的优化探索之路 安晏伯 学而思网校 技术专家 目 录 问题引入 01 难点攻克 02 主动式内存缓存框架 03 总结 04 问题引入 第一部分 为什么能有极致的性能? 01. 如何优化? 解决了哪些技术难题? 主动式内存缓存 如何优化? 极致的性能 除了网络IO,与Redis有什么区别? 复杂的查询怎么办? 02. 传统的Cache很难 • 复杂的查询场景,内存数据如何高效组织? • 主动式内存缓存,如何保证数据实时性? • 数据太多,内存不够用,如何进行存储扩展? 通过本次分享,可以带来哪些收获? 难点攻克 第二部分 使用内存缓存 数据一致性如何保证? 一致性 01. 缓存如何保证更新,如何与数据库同步 同步、更新  被动方式  缓存过期  定期同步  主动方式  监听数据变化 数据加载,更新 热数据的交换 冷 热 新 系 统 历 史 数 据 冷数据、数据量多 缓存成本大、命中低、收益小 热 数 据 当前系统中的热点数据 命中率高 系 统 新 增 数 据 近期新增数据,较大概率命中 存储空间 缓存性能 冷热可交换,引擎可扩展 06. 冷热数据交换,通过栈式缓存结构,实现多级缓存策略 语言的局限性 07. 基于golang语言,内存对象超过百万量级后出现的GC耗时问题0 码力 | 48 页 | 6.06 MB | 1 年前3
 CurveFS S3本地缓存盘方案Page 1 of 9 Curvefs-S3 本地写缓存盘方案© XXX Page 2 of 9 背景 方案设计 主要数据结构定义 方案设计思考 POC验证 背景 当前,s3客户端在写底层存储的时候是直接写入远端对象存储,由于写远端时延相对会较高,所以为了提升性能,引入了写本地缓存盘方案。也即要写底层存储时,先把数据写到本地缓存硬盘,然后再把本地缓存 硬盘中的数据异步上传到远端对象存储。 方案设计© S3模块接收到写入后先写入写内存缓存页,如果满足持久化的条件后,那么则准备持久化。 如果未配置本地硬盘作为写缓存,那么直接持久化到远端的对象存储;如果配置了本地硬盘作为写缓存,那么则尝试先写入本地硬盘写缓存目录。 写本地硬盘缓存目录之前先判断缓存目录容量是否已达到阈值,如果已经达到阈值,那么则直接写入到远端对象存储;否则,则写入到本地硬盘写缓存目录中。文件写入本地硬盘写缓存目录后,从本地硬盘读目录© XXX Page 4 of 9 做一个硬链接链接到该文件。 本次io在本地硬盘写入好之后,异步上传模块会适时把本地硬盘写缓存目录中的文件上传到远端对象存储集群,上传成功后,删除本地写缓存目录中的对应文件。 同时,缓存清理模块会定时检查本地硬盘缓存目录容量情况,如果容量已经达到阈值了,则进行文件的清理工作。 另外,异常管理模块处理客户端挂掉后的文件重新上传问题。 主要数据结构定义 class0 码力 | 9 页 | 150.46 KB | 6 月前3 CurveFS S3本地缓存盘方案Page 1 of 9 Curvefs-S3 本地写缓存盘方案© XXX Page 2 of 9 背景 方案设计 主要数据结构定义 方案设计思考 POC验证 背景 当前,s3客户端在写底层存储的时候是直接写入远端对象存储,由于写远端时延相对会较高,所以为了提升性能,引入了写本地缓存盘方案。也即要写底层存储时,先把数据写到本地缓存硬盘,然后再把本地缓存 硬盘中的数据异步上传到远端对象存储。 方案设计© S3模块接收到写入后先写入写内存缓存页,如果满足持久化的条件后,那么则准备持久化。 如果未配置本地硬盘作为写缓存,那么直接持久化到远端的对象存储;如果配置了本地硬盘作为写缓存,那么则尝试先写入本地硬盘写缓存目录。 写本地硬盘缓存目录之前先判断缓存目录容量是否已达到阈值,如果已经达到阈值,那么则直接写入到远端对象存储;否则,则写入到本地硬盘写缓存目录中。文件写入本地硬盘写缓存目录后,从本地硬盘读目录© XXX Page 4 of 9 做一个硬链接链接到该文件。 本次io在本地硬盘写入好之后,异步上传模块会适时把本地硬盘写缓存目录中的文件上传到远端对象存储集群,上传成功后,删除本地写缓存目录中的对应文件。 同时,缓存清理模块会定时检查本地硬盘缓存目录容量情况,如果容量已经达到阈值了,则进行文件的清理工作。 另外,异常管理模块处理客户端挂掉后的文件重新上传问题。 主要数据结构定义 class0 码力 | 9 页 | 150.46 KB | 6 月前3
 MongoDB 分布式架构演进Postgres Conference China 2016 中国用户大会 Postgres Conference China 2016 中国用户大会 MongoDB 分布式架构演进 张友东(林青) 阿里云数据库技术团队 2016Postgres中国用户大会 Postgres Conference China 2016 中国用户大会 2016Postgres中国用户大会 Postgres0 码力 | 29 页 | 2.03 MB | 1 年前3 MongoDB 分布式架构演进Postgres Conference China 2016 中国用户大会 Postgres Conference China 2016 中国用户大会 MongoDB 分布式架构演进 张友东(林青) 阿里云数据库技术团队 2016Postgres中国用户大会 Postgres Conference China 2016 中国用户大会 2016Postgres中国用户大会 Postgres0 码力 | 29 页 | 2.03 MB | 1 年前3
 分布式任务系统cronsun@Copyright Sunteng Technology 分布式任务系统 cronsun 苏创绩 @Copyright Sunteng Technology 目录 01 任务系统 02 分布式任务系统 03 cronsun 04 心得体会 @Copyright Sunteng Technology Part One 01 任务系统 @Copyright Sunteng Technology Part Two 02 分布式任务系统 @Copyright Sunteng Technology 分布式系统的特点 1. 分布性 2. 对等性 3. 并发性 4. 缺乏全局时钟 5. 故障总是会发生 @Copyright Sunteng Technology 分布式 cron 分布式crond 分布式crontab cmd1 cmd2 cmd3 Chronos Chronos 是一个运行在 Mesos 之上的具有分布式容错特性的作业调度器 @Copyright Sunteng Technology Dkron 分布式高可用的任务调度系统 @Copyright Sunteng Technology 我眼里的“西施” 1. 可替代 cron 2. 分布式、高可用 3. 支持多种任务属性 4. 易用 5. 易部署 @Copyright0 码力 | 48 页 | 1.52 MB | 1 年前3 分布式任务系统cronsun@Copyright Sunteng Technology 分布式任务系统 cronsun 苏创绩 @Copyright Sunteng Technology 目录 01 任务系统 02 分布式任务系统 03 cronsun 04 心得体会 @Copyright Sunteng Technology Part One 01 任务系统 @Copyright Sunteng Technology Part Two 02 分布式任务系统 @Copyright Sunteng Technology 分布式系统的特点 1. 分布性 2. 对等性 3. 并发性 4. 缺乏全局时钟 5. 故障总是会发生 @Copyright Sunteng Technology 分布式 cron 分布式crond 分布式crontab cmd1 cmd2 cmd3 Chronos Chronos 是一个运行在 Mesos 之上的具有分布式容错特性的作业调度器 @Copyright Sunteng Technology Dkron 分布式高可用的任务调度系统 @Copyright Sunteng Technology 我眼里的“西施” 1. 可替代 cron 2. 分布式、高可用 3. 支持多种任务属性 4. 易用 5. 易部署 @Copyright0 码力 | 48 页 | 1.52 MB | 1 年前3
 Curve 分布式存储设计Curve 分布式存储设计 程义 — Curve Maintainer XAgenda 第二 第三 第四 第一 Curve的由来 Curve的设计目标 Curve块存储 和 Curve文件存储 Curve社区Curve的由来 1. 代码复杂/代码量大 2. 运维难度高 3. 无法满足高的性能需求Curve的设计目标 1. Curve云原生软件定义存储 2. Curve块存储 高性能,易运维,云原生Curve块存储 1. 高性能分布式共享数据库场景 2. Curve块存储提供底层分布式共享存储 3. Polardb for PostgreSQL提供上层高性能数 据库服务 4. 性能测试 1. benchmarkSQL 每分钟事务数提升39% 2. pgbench 延迟降低21% TPS提升26% 研究现状Curve块存储 1. 分布式块存储服务 2. KVM块存储服务 快速跨云弹性发布的业务 3. 低成本大容量需求的业务 4. 中间件冷热数据自动分离 5. S3和POSIX统一访问需求 主要挑战和支持场景Curve Roadmap 1. 架构 1. 文件存储支持分布式缓存、完善冷热数据分层存储能力 2. 完善混合云、公有云上部署架构 3. 完善高性能3副本存储引擎,支持混合盘 4. 文件存储支持数据存储到HDFS、rados等引擎 2. 性能 1. 完善RDMA/SPDK方案,发布稳定版本0 码力 | 20 页 | 4.13 MB | 6 月前3 Curve 分布式存储设计Curve 分布式存储设计 程义 — Curve Maintainer XAgenda 第二 第三 第四 第一 Curve的由来 Curve的设计目标 Curve块存储 和 Curve文件存储 Curve社区Curve的由来 1. 代码复杂/代码量大 2. 运维难度高 3. 无法满足高的性能需求Curve的设计目标 1. Curve云原生软件定义存储 2. Curve块存储 高性能,易运维,云原生Curve块存储 1. 高性能分布式共享数据库场景 2. Curve块存储提供底层分布式共享存储 3. Polardb for PostgreSQL提供上层高性能数 据库服务 4. 性能测试 1. benchmarkSQL 每分钟事务数提升39% 2. pgbench 延迟降低21% TPS提升26% 研究现状Curve块存储 1. 分布式块存储服务 2. KVM块存储服务 快速跨云弹性发布的业务 3. 低成本大容量需求的业务 4. 中间件冷热数据自动分离 5. S3和POSIX统一访问需求 主要挑战和支持场景Curve Roadmap 1. 架构 1. 文件存储支持分布式缓存、完善冷热数据分层存储能力 2. 完善混合云、公有云上部署架构 3. 完善高性能3副本存储引擎,支持混合盘 4. 文件存储支持数据存储到HDFS、rados等引擎 2. 性能 1. 完善RDMA/SPDK方案,发布稳定版本0 码力 | 20 页 | 4.13 MB | 6 月前3
 分布式NewSQL数据库TiDB优刻得科技股份有限公司 版权所有 分布式 分布式NewSQL数据库 数据库 TiDB 产品⽂档 2 9 11 12 12 12 12 12 13 14 14 14 14 15 15 16 16 18 ⽬录 ⽬录 ⽬录 ⽬录 概览 概览 什么是 什么是TiDB 产品优势 产品优势 ⾼度兼容 MySQL 动态扩展 分布式事务 HTAP 真正⾦融级⾼可⽤ 适⽤场景 适⽤场景 对数据⼀致性及⾼可靠 场景 Real-time HTAP 场景 数据汇聚、⼆次加⼯处理的场景 真正⾦融级⾼可⽤ UCloud 云上 云上 TiDB 架构⽰意图 架构⽰意图 TiDB TiDB Serverless ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 2/120 20 20 21 24 24 25 28 28 28 28 28 29 30 30 32 TiDB Serverless 删除 实例 实例 创建TiDB集群 查看TiDB实例列表 查看TiDB实例详情 删除TiDB实例 ⽤户 ⽤户 添加⽤⼾及权限 重置⽤⼾密码 删除⾮root⽤⼾ ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 3/120 38 39 40 40 41 41 43 43 43 46 49 49 52 53 550 码力 | 120 页 | 7.42 MB | 6 月前3 分布式NewSQL数据库TiDB优刻得科技股份有限公司 版权所有 分布式 分布式NewSQL数据库 数据库 TiDB 产品⽂档 2 9 11 12 12 12 12 12 13 14 14 14 14 15 15 16 16 18 ⽬录 ⽬录 ⽬录 ⽬录 概览 概览 什么是 什么是TiDB 产品优势 产品优势 ⾼度兼容 MySQL 动态扩展 分布式事务 HTAP 真正⾦融级⾼可⽤ 适⽤场景 适⽤场景 对数据⼀致性及⾼可靠 场景 Real-time HTAP 场景 数据汇聚、⼆次加⼯处理的场景 真正⾦融级⾼可⽤ UCloud 云上 云上 TiDB 架构⽰意图 架构⽰意图 TiDB TiDB Serverless ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 2/120 20 20 21 24 24 25 28 28 28 28 28 29 30 30 32 TiDB Serverless 删除 实例 实例 创建TiDB集群 查看TiDB实例列表 查看TiDB实例详情 删除TiDB实例 ⽤户 ⽤户 添加⽤⼾及权限 重置⽤⼾密码 删除⾮root⽤⼾ ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 3/120 38 39 40 40 41 41 43 43 43 46 49 49 52 53 550 码力 | 120 页 | 7.42 MB | 6 月前3
 OpenShift Container Platform 4.14 分布式追踪OpenShift Container Platform 4.14 分布式追踪 分布式追踪安装、使用与发行注记 Last Updated: 2024-02-23 OpenShift Container Platform 4.14 分布式追踪 分布式追踪安装、使用与发行注记 法律通告 法律通告 Copyright © 2024 Red Hat, Inc. The text of and trademarks are the property of their respective owners. 摘要 摘要 本文档提供了有关如何在 OpenShift Container Platform 中使用分布式追踪的信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 分布式追踪 分布式追踪发 发行注 行注记 记 1.1. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.0 发行注记 1.2. RED HAT OPENSHIFT0 码力 | 100 页 | 928.24 KB | 1 年前3 OpenShift Container Platform 4.14 分布式追踪OpenShift Container Platform 4.14 分布式追踪 分布式追踪安装、使用与发行注记 Last Updated: 2024-02-23 OpenShift Container Platform 4.14 分布式追踪 分布式追踪安装、使用与发行注记 法律通告 法律通告 Copyright © 2024 Red Hat, Inc. The text of and trademarks are the property of their respective owners. 摘要 摘要 本文档提供了有关如何在 OpenShift Container Platform 中使用分布式追踪的信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 分布式追踪 分布式追踪发 发行注 行注记 记 1.1. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.0 发行注记 1.2. RED HAT OPENSHIFT0 码力 | 100 页 | 928.24 KB | 1 年前3
 OpenShift Container Platform 4.6 分布式追踪OpenShift Container Platform 4.6 分布式追踪 分布式追踪安装、使用与发行注记 Last Updated: 2023-02-27 OpenShift Container Platform 4.6 分布式追踪 分布式追踪安装、使用与发行注记 Enter your first name here. Enter your surname here. Enter your trademarks are the property of their respective owners. 摘要 摘要 本文档提供了有关如何在 OpenShift Container Platform 中使用分布式追踪的信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 分布式追踪 分布式追踪发 发行注 行注记 记 1.1. 分布式追踪概述 1.2. 让开源更具包容性 1.3. 获取支持 1.4. 新功能及功能增强 1.4.1. Red Hat OpenShift distributed tracing0 码力 | 59 页 | 572.03 KB | 1 年前3 OpenShift Container Platform 4.6 分布式追踪OpenShift Container Platform 4.6 分布式追踪 分布式追踪安装、使用与发行注记 Last Updated: 2023-02-27 OpenShift Container Platform 4.6 分布式追踪 分布式追踪安装、使用与发行注记 Enter your first name here. Enter your surname here. Enter your trademarks are the property of their respective owners. 摘要 摘要 本文档提供了有关如何在 OpenShift Container Platform 中使用分布式追踪的信息。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 目 目录 录 第 第 1 章 章 分布式追踪 分布式追踪发 发行注 行注记 记 1.1. 分布式追踪概述 1.2. 让开源更具包容性 1.3. 获取支持 1.4. 新功能及功能增强 1.4.1. Red Hat OpenShift distributed tracing0 码力 | 59 页 | 572.03 KB | 1 年前3
 TiDB: HBase分布式事务与SQL实现TiDB: HBase分布式事务与SQL实现 About me ● TiDB & Codis founder ● Golang expert ● Distributed database developer ● Currentlly, CEO and co-founder of PingCAP liuqi@pingcap.com https://github.com/pingcap/tidb0 码力 | 34 页 | 526.15 KB | 1 年前3 TiDB: HBase分布式事务与SQL实现TiDB: HBase分布式事务与SQL实现 About me ● TiDB & Codis founder ● Golang expert ● Distributed database developer ● Currentlly, CEO and co-founder of PingCAP liuqi@pingcap.com https://github.com/pingcap/tidb0 码力 | 34 页 | 526.15 KB | 1 年前3
共 762 条
- 1
- 2
- 3
- 4
- 5
- 6
- 77













