积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(162)Python(75)C++(61)Julia(18)Conda(16)Django(13)云计算&大数据(12)数据库(11)VirtualBox(11)TiDB(10)

语言

全部英语(151)中文(简体)(28)中文(繁体)(11)英语(2)[zh](1)日语(1)韩语(1)葡萄牙语(1)ro(1)

格式

全部PDF文档 PDF(188)其他文档 其他(7)DOC文档 DOC(2)PPT文档 PPT(1)
 
本次搜索耗时 0.737 秒,为您找到相关结果约 198 个.
  • 全部
  • 后端开发
  • Python
  • C++
  • Julia
  • Conda
  • Django
  • 云计算&大数据
  • 数据库
  • VirtualBox
  • TiDB
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • [zh]
  • 日语
  • 韩语
  • 葡萄牙语
  • ro
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Boosting Software Efficiency

    0 码力 | 180 页 | 1.65 MB | 6 月前
    3
  • pdf文档 Balancing Efficiency and Flexibility: Cost of Abstractions in Embedded Systems

    0 码力 | 75 页 | 2.12 MB | 6 月前
    3
  • pdf文档 TiDB v8.5 Documentation

    indexes">Global indexes for partitioned tables (GA) Global indexes can effectively improve the efficiency of retrieving non- �→ partitioned columns, and remove the restriction that a unique key �→ must scanning tasks based on node scale and hardware specifications. This �→ improves statistics collection efficiency by fully utilizing system �→ resources, reduces manual tuning, and ensures stable cluster �→ performance observe high CPU �→ consumption operations from multiple perspectives, and improving �→ diagnostic efficiency. This is especially useful for diagnosing �→ scenarios such as CPU spikes in instances or read/write
    0 码力 | 6730 页 | 111.36 MB | 10 月前
    3
  • pdf文档 TiDB v8.4 Documentation

    indexes">Global indexes for partitioned tables (GA) Global indexes can effectively improve the efficiency of retrieving non- �→ partitioned columns, and remove the restriction that a unique key �→ must scanning tasks based on node scale and hardware specifications. This �→ improves statistics collection efficiency by fully utilizing system �→ resources, reduces manual tuning, and ensures stable cluster �→ performance observe high CPU �→ consumption operations from multiple perspectives, and improving �→ diagnostic efficiency. This is especially useful for diagnosing �→ scenarios such as CPU spikes in instances or read/write
    0 码力 | 6705 页 | 110.86 MB | 10 月前
    3
  • pdf文档 TiDB v8.3 Documentation

    partitioned tables (experimental) Global indexes can effectively improve the efficiency of retrieving non- �→ partitioned columns, and remove the restriction that a unique key �→ must mance for high NDV data #9196 @guo-shaoge Before v8.3.0, TiFlash has low aggregation calculation efficiency during the first stage of HashAgg aggregation when handling data with high NDV (number of distinct statement to create SQL execution plan bindings from multiple historical execution plans to improve the efficiency of creating bindings. • The SQL execution plan binding supports more optimizer hints, and optimizes
    0 码力 | 6606 页 | 109.48 MB | 10 月前
    3
  • pdf文档 TiDB v8.2 Documentation

    loading �→ efficiency by up to 10 times For clusters with a large number of tables and partitions, such as SaaS �→ or PaaS services, improvement in statistics loading efficiency can �→ solve release. For more information, see documentation. 2.2.1.2 Reliability • Improve statistics loading efficiency by up to 10 times #52831 @hawkingrei SaaS or PaaS applications can have a large number of data validation, which increases the complexity of development and maintenance, and reduces development efficiency. Starting from v8.2.0, the JSON_SCHEMA_VALID() func- tion is introduced. Using JSON_SCHEMA_VALID()
    0 码力 | 6549 页 | 108.77 MB | 10 月前
    3
  • pdf文档 TiDB v8.1 Documentation

    �→ Sort (GA in v8.0.0) The Global Sort feature aims to improve the stability and efficiency of �→ IMPORT INTO and CREATE INDEX. By globally �→ sorting the data s view to provide usage statistics of �→ indexes. This feature helps you assess the efficiency of indexes in �→ the database and optimize the index design. Data Migration TiDB. You will use TiDB Cloud to create a TiDB Cloud Serverless cluster, connect to it, and run a sample application on it. If you need to run TiDB on your local machine, see Starting TiDB Locally. 117
    0 码力 | 6479 页 | 108.61 MB | 10 月前
    3
  • pdf文档 Trends Artificial Intelligence

    JP Morgan End-to-End AI Modernization – 2023-2025E, per JP Morgan We have high hopes for the efficiency gains we might get [from AI]… …Certain key subsets of the users tell us they are gaining several alerts. It leverages machine learning to improve decision-making at the restaurant level, enhancing efficiency, reducing waste, and supporting staff productivity. ‘Traditional’ Enterprise AI Adoption = Rising students across a mix of STEM and non-STEM disciplines; only answers from 18-24 year olds used. Sample includes both AI users and non-users but excludes “AI rejectors” – defined as non-users with little
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Using Modern C++ to Build XOffsetDatastructure

    which offers limited benefits, we aim to transform from O(n) to O(1), resulting in substantial efficiency gains. Fanchen Su, XOffsetDatastructure, CppCon 2024 7 Time Input Size O(n) O(n) O(1) O(n)->O(n) which offers limited benefits, we aim to transform from O(n) to O(1), resulting in substantial efficiency gains. • Implementation • High performance // In terms of Implementation, we ensure high performance containers, enabling complex data structures. XVector equips; XMap items; Code sample struct Character { // ... XMap items; }; Fanchen Su, XOffsetDatastructure, CppCon
    0 码力 | 111 页 | 3.03 MB | 6 月前
    3
  • pdf文档 micrograd++: A 500 line C++ Machine Learning Library

    powerful framework for building and training machine learning models. By leveraging the performance efficiency of C++, micro- grad++ offers a robust solution for integrating machine learning capabilities directly addresses these challenges by offering a pure C++ implementation that ensures high performance and efficiency. Moreover, micrograd++ retains the educational value of the original micrograd library, making deployment (CI/CD) pipeline using GitHub Actions to automate testing and deployment processes. V. SAMPLE CODE A. Example Usage The following code snippet demonstrates the basic usage of micrograd++ for
    0 码力 | 3 页 | 1.73 MB | 6 月前
    3
共 198 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 20
前往
页
相关搜索词
BoostingSoftwareEfficiencyBalancingandFlexibilityCostofAbstractionsinEmbeddedSystemsTiDBv8DocumentationTrendsArtificialIntelligenceUsingModernC++toBuildXOffsetDatastructuremicrograd++500lineMachineLearningLibrary
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩