积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(203)C++(116)Python(56)综合其他(21)Julia(18)Conda(17)系统运维(16)云计算&大数据(16)网络与安全(15)人工智能(14)

语言

全部英语(224)中文(繁体)(11)中文(简体)(10)zh(5)英语(4)西班牙语(1)fj(1)日语(1)韩语(1)

格式

全部PDF文档 PDF(242)DOC文档 DOC(11)其他文档 其他(7)PPT文档 PPT(4)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 264 个.
  • 全部
  • 后端开发
  • C++
  • Python
  • 综合其他
  • Julia
  • Conda
  • 系统运维
  • 云计算&大数据
  • 网络与安全
  • 人工智能
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • zh
  • 英语
  • 西班牙语
  • fj
  • 日语
  • 韩语
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

    Leveraging the power of C++ for efficient machine learning on embedded devices Adrian Stanciu adrian.stanciu.pub@gmail.com CppCon, 2023 1 / 50About me ◮ I am a software engineer from Romania ◮ I have Image classification ◮ Hand gesture recognition ◮ Summary ◮ Q&A 4 / 50Motivation 5 / 50Machine Learning (ML) ◮ Subfield of Artificial Inteligence (AI) ◮ Enables computers to learn from data and then consumption ◮ May have real-time performance constraints 7 / 50Machine learning on embedded devices ◮ Alternative to cloud-based machine learning ◮ Advantages: ◮ Real-time processing ◮ Low latency ◮ Reduced bandwidth
    0 码力 | 51 页 | 1.78 MB | 6 月前
    3
  • pdf文档 Designing Fast and Efficient List-like Data Structures

    0 码力 | 29 页 | 852.61 KB | 6 月前
    3
  • pdf文档 micrograd++: A 500 line C++ Machine Learning Library

    micrograd++: A 500 line C++ Machine Learning Library Gautam Sharma Independent Researcher gautamsharma2813@gmail.com Abstract—micrograd++ is a pure C++ machine learning li- brary inspired by Andrej Karpathy’s for building and training machine learning models. By leveraging the performance efficiency of C++, micro- grad++ offers a robust solution for integrating machine learning capabilities directly into C++-based Traditionally, all machine learning libraries are extremely bulky and very hard to integrate as third party dependencies. This aspect scares practitioners to adopt a C++ based machine learning library for prototyping
    0 码力 | 3 页 | 1.73 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Intelligence,’ a term he coined 1/62: Arthur Samuel, an IBM computer scientist, creates a self-learning program that proves capable of defeating a top USA checkers champion AI ‘Winter1’ (1967-1996) Shakey, the first general- purpose mobile robot that can reason about its own actions 5/97: Deep Blue, IBM’s chess- playing computer, defeats Garry Kasparov, the world chess champion Trending = Unprecedented37 Machine-Learning Model* Trending = In 2015... Industry Surpassed Academia as Data + Compute + Financial Needs Rose *Machine Learning = A subset of AI where machines learn
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    step. How it started Morgan Stanley’s first eval focused on making their financial advisors more efficient and effective. The premise was simple: If advisors could access information faster and reduce the people. AI amplifies our potential and helps us be more efficient and creative. Elena Alfaro Head of Global AI Adoption Product Note: With deep research, ChatGPT can do work independently. Give it a prompt employee productivity and gives them access to deep, detailed research on any topic in minutes. In an internal evaluation by experts across domains, deep research saved an average of 4 hours per complex
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    the model uses to predict a specific output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. However, crafting the most effective prompt can be complicated model’s ability to provide meaningful output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. Prompt Engineering February 2025 7 When you chat with temperature control can be understood in a similar way to the softmax function used in machine learning. A low temperature setting mirrors a low softmax temperature (T), emphasizing a single, preferred
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Heterogeneous Modern C++ with SYCL 2020

    Canada ● Chair of Programming Languages for Standards Council of Canada Chair of WG21 SG19 Machine Learning Chair of WG21 SG14 Games Dev/Low Latency/Financial Trading/Embedded ● Editor: C++ SG5 Transactional hardware with built-in reduction operation acceleration. • Work group and subgroup algorithms • Efficient parallel operations between work items • Class template argument deduction (CTAD) and template boilerplate code and streamlines the use of C++ software design patterns • Expanded interoperability • Efficient acceleration by diverse backend acceleration APIs • SYCL atomic operations are now more closely
    0 码力 | 114 页 | 7.94 MB | 6 月前
    3
  • pdf文档 Comprehensive Rust(English) 202412

    language and we won't be able to cover all of it in a few days. Some non-goals of this course are: • Learning how to develop macros: please see Chapter 19.5 in the Rust Book and Rust by Example instead. Assumptions Rust 1 hour and 5 minutes Deep Dives In addition to the 4-day class on Rust Fundamentals, we cover some more specialized topics: Rust in Android The Rust in Android deep dive is a half-day course on runs and make sure they work when you run them by hand. 15 Rust in Chromium The Rust in Chromium deep dive is a half-day course on using Rust as part of the Chromium browser. It includes using Rust in
    0 码力 | 382 页 | 1.00 MB | 10 月前
    3
  • word文档 A Seat at the Table - IT Leadership in the Age of Agility

    a kind of failure that is the opposite of defects and outages.  Trying things out is a way of learning in the Agile world; it is a kind of feedback cycle that lets us make good decisions in the normal more quickly and with more good information available.  “Failing” in this sense is simply an efficient process we use to select among alternatives. Shadow IT Agile ways of working support a community The critical change is that of moving from a plan-driven approach to an Agile approach, based on learning and adapting. This is deeply opposed—let me say that again—deeply opposed to the control paradigm
    0 码力 | 7 页 | 387.48 KB | 5 月前
    3
  • pdf文档 2024 中国开源开发者报告

    Transactions on Information Theory, 2(3), 61-79. 【3】Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489. 【4】 Wei, Jason, et al. "Chain-of-thought Processing Systems 36 (2024). 【8】https://huggingface.co/spaces/mteb/leaderboard 【9】https://github.com/deep-floyd/IF 【10】https://developer.nvidia.com/blog/pushing-the-boundaries-of-speech-recognition-with-nemo-parakeet-asr- 在 IntelliJ IDEA 中,我们可以看到 AI 功能的加入,如:原生的向量化模型、基于语义化搜 索(SearchEverywhere)、结合补全统计的机器学习补全插件 Machine Learning Code Completion、适用于单个代码行的 Full Line Code Completion 等等。 而除了 GitHub Copilot 工具本身,它还开放了其插件能力,使得我们可以定义自己的
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
共 264 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 27
前往
页
相关搜索词
LeveragingthePowerofC++forEfficientMachineLearningonEmbeddedDevicesDesigningFastandListlikeDataStructuresmicrograd++500lineLibraryTrendsArtificialIntelligenceOpenAIAIinEnterpriseGooglePromptEngineeringv7HeterogeneousModernwithSYCL2020ComprehensiveRustEnglish202412SeatatTableITLeadershipAgeAgility2024中国开源开发开发者报告
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩