积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(28)Python(25)Conda(9)数据库(5)TiDB(5)综合其他(4)人工智能(4)C++(3)

语言

全部英语(34)日语(1)中文(简体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(37)
 
本次搜索耗时 0.274 秒,为您找到相关结果约 37 个.
  • 全部
  • 后端开发
  • Python
  • Conda
  • 数据库
  • TiDB
  • 综合其他
  • 人工智能
  • C++
  • 全部
  • 英语
  • 日语
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Notes for install Keras on Anaconda3

    installation works: library(keras) mnist <- dataset_mnist() train_images <- mnist$train$x train_labels <- mnist$train$y test_images <- mnist$test$x test_labels <- mnist$test$y #data structure checking
    0 码力 | 3 页 | 654.13 KB | 8 月前
    3
  • pdf文档 Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

    (MB) 93 320 32 / 50Hand gesture recognition 33 / 50Data ◮ Google MediaPipe’s Rock-Paper-Scissors dataset for hand gesture recognition ◮ Contains 125 images for each class ◮ Images have various sizes ◮ ◮ Images have 3 color channels per pixel (RGB) ◮ Laurence Moroney’s Rock-Paper-Scissors dataset (published by Sani Kamal on Kaggle) ◮ Contains 964 images for each class split into training data (840) in Python, on a laptop Dataset Train duration Model size (MB) Small 2m15s 23 Big 7m10s 23 36 / 50Test the Rock-Paper-Scissors model ◮ Using the testing data of the big dataset (124 images per class)
    0 码力 | 51 页 | 1.78 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    describe the data? 描述数据 Show me the top trends in a visual format. 以视觉形式显示趋势 Can you clean this dataset? 清洗数据 Can you create a heatmap using this data? 创建一个热力图 Can you segment this data and create a table cloud? 做一个词云 Can you create a chart using this data? 画一个图表 What are the rows and columns in this dataset? 描述一下行和列 Can you make the graphs more beautiful? 把图美化一下 Can you write a one sentence recap of this the main takeaway from this dataset? 找出最主要的信息 Can you explain this dataset like I’m 5 years old? 像给五岁小朋友讲故事那样解释一 下这个数据集 Can you create a presentation based this dataset? 做一个整体展示 Can you create 10 graphs
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Trends Artificial Intelligence

    with significant use). Source: Epoch AI (5/25) Training Dataset Size (Number of Words) for Key AI Models – 1950-2025, per Epoch AI Training Dataset Size – Number of Words +260% / Year AI Technology Compounding Estimates99 CapEx Spend – Big Technology Companies = Inflected With AI’s Rise100 AI Model Training Dataset Size = 250% Annual Growth Over Fifteen Years, per Epoch AI Note: In AI language models, tokens represent represent basic units of text (e.g., words or sub-words) used during training. Training dataset sizes are often measured in total tokens processed. A larger token count typically reflects more diverse
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Can Data-Oriented-Design be Improved?

    5How DoD is used in actual code • Platform specific code • Procedural/imperative code • Problem/dataset specific code • Hand-optimize cache lines and struct layout 6How can we improve it? • We could opposite philosophy Data oriented code • Platform specific code • Procedural/imperative code • Problem/dataset specific code • Hand-optimize cache lines and struct layout 9 Opposite philosophy • Cross platform opposite philosophy Data oriented code • Platform specific code • Procedural/imperative code • Problem/dataset specific code • Hand-optimize cache lines and struct layout 10 Opposite philosophy • Cross
    0 码力 | 39 页 | 1.18 MB | 6 月前
    3
  • pdf文档 Cooperative C++ Evolution

    are all of them sorted by how often they appear as user-defined identifiers in that particular dataset: …” assertexpr 0 ccassert 0 co_assert 0 contract_assert 0 contractassert 0 cppassert are all of them sorted by how often they appear as user-defined identifiers in that particular dataset: …” assertexpr 0 ccassert 0 co_assert 0 contract_assert 0 contractassert 0 cppassert 3734 matches … but we also did *not* make yield a full keyword, which has 9533 matches in that dataset, and chose co_yield instead… Where is the bar?”76 (1) Naming is hard (2) Compatibility is a major
    0 码力 | 85 页 | 5.73 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    • Quantization within TVM - Automatic Quantization • TVM stack ingests a FP32 graph and a small dataset • Finds suitable quantization scale • Produces a quantized graph • Compiling Pre-quantized models
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    答 对 , 例 如 使 用 d a t a s e t s 库 (Hugging Face的datasets库)来加载SQuAD数据集 (Stanford Question Answering Dataset),这个数据集 是一个著名的问答数据集,基于维基百科数据生成,并且数 据是2020年之前的。 AI幻觉问题抽取:多数据集 问题加载 探讨大语言模型(LLMs)在模拟人类意见动态和社 会现象(如极化和错误信息传播)中的表现,特别
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 TiDB v8.5 Documentation

    experience the convenience and high performance of TiDB HTAP by querying an example table in a TPC-H dataset. TPC-H is a popular decision support benchmark that consists of a suite of business oriented ad-hoc for production. 3.2.2.2 Step 2. Prepare test data In the following steps, you can create a TPC-H dataset as the test data to use TiDB HTAP. If you are interested in TPC-H, see General Implementation Guidelines ### The directory must be empty, and the storage space must be greater than �→ the size of the dataset to be imported. ### For better import performance, it is recommended to use a directory �→ different
    0 码力 | 6730 页 | 111.36 MB | 10 月前
    3
  • pdf文档 TiDB v8.4 Documentation

    experience the convenience and high performance of TiDB HTAP by querying an example table in a TPC-H dataset. TPC-H is a popular decision support benchmark that consists of a suite of business oriented ad-hoc for production. 3.2.2.2 Step 2. Prepare test data In the following steps, you can create a TPC-H dataset as the test data to use TiDB HTAP. If you are interested in TPC-H, see General Implementation Guidelines ### The directory must be empty, and the storage space must be greater than �→ the size of the dataset to be imported. ### For better import performance, it is recommended to use a directory �→ different
    0 码力 | 6705 页 | 110.86 MB | 10 月前
    3
共 37 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
NotesforinstallKerasonAnaconda3LeveragingthePowerofC++EfficientMachineLearningEmbeddedDevices清华大学DeepSeekDeepResearch科研TrendsArtificialIntelligenceCanDataOrientedDesignbeImprovedCooperativeEvolutionTVMMeetupQuantization清华华大大学普通通人普通人如何抓住红利TiDBv8Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩