安全简介0 码力 | 2 页 | 304.16 KB | 5 月前3
人工智能安全治理框架 1.0全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 针对人工智能内生安全风险 ………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 6.4 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。0 码力 | 20 页 | 3.79 MB | 1 月前3
Hello 算法 1.2.0 简体中文 Kotlin 版Hello 算法 Kotlin 语言版 作者:靳宇栋(@krahets) 代码审阅:陈东辉(@curtishd) Release 1.2.0 2024‑12‑06 序 两年前,我在力扣上分享了“剑指 Offer”系列题解,受到了许多读者的鼓励和支持。在与读者交流期间,我 最常被问的一个问题是“如何入门算法”。逐渐地,我对这个问题产生了浓厚的兴趣。 两眼一抹黑地刷题似乎是最受欢迎的方法 i } return -1 } 值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来 一定的误导性。而最差时间复杂度更为实用,因为它给出了一个效率安全值,让我们可以放心地使用算法。 从上述示例可以看出,最差时间复杂度和最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率 可能很小,并不能真实地反映算法运行效率。相比之下,平均时间复杂度可以体现算法在随机输入数据下的 indices) { if (nums[i] == target) return i } return -1 } 7. 扩容数组 在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在 大多数编程语言中,数组的长度是不可变的。 如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次复制到新数组。这是一个 ?(?) 的操作,在数组很大的情况下非常耗时。代码如下所示:0 码力 | 382 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 繁体中文 Kotlin 版Hello 演算法 Kotlin 語言版 作者:靳宇棟(@krahets) 程式碼審閱:陳東輝(@curtishd) Release 1.2.0 2024‑12‑06 序 兩年前,我在力扣上分享了“劍指 Offer”系列題解,受到了許多讀者的鼓勵與支持。在與讀者交流期間,我 最常被問到的一個問題是“如何入門演算法”。漸漸地,我對這個問題產生了濃厚的興趣。 兩眼一抹黑地刷題似乎是最受歡 i } return -1 } 值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來 一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算 法。 從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率 可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料 indices) { if (nums[i] == target) return i } return -1 } 7. 擴容陣列 在複雜的系統環境中,程式難以保證陣列之後的記憶體空間是可用的,從而無法安全地擴展陣列容量。因此 在大多數程式語言中,陣列的長度是不可變的。 如果我們希望擴容陣列,則需重新建立一個更大的陣列,然後把原陣列元素依次複製到新陣列。這是一個 ?(?) 的操作,在陣列很大的情況下非常耗時。程式碼如下所示:0 码力 | 382 页 | 18.79 MB | 10 月前3
Service Mesh 在蚂蚁金服生产级安全实践Service Mesh 在蚂蚁金服生产级安全实践 彭泽文 蚂蚁金服高级开发工程师 2019.8.11 Service Mesh Meetup #6 广州站基于 Secret Discovery Service Sidecar 的证书管理方案 使用可信身份服务构建敏感数据下发通道 Service Mesh Sidecar 的 TLS 生产级落地实践 分享内容基于 Secret Discovery Volume 形式挂载。 存在以下三个问题: Secret 管理方式与现有密钥管理系统有冲突,需要密钥管理系统强依赖 Kubernetes Secret 以明文形式挂载在容器的文件系统中,存在安全隐患 Secret 更新时,Sidecar 需要通过热重启方式重新加载,成本高昂基于 Secret Discovery Service Sidecar 的证书管理方案 Envoy SDS 证书管理流程 进行密钥管理和分发,Sidecar 通过 gRPC 请求获取证书,并利用 gRPC stream 能力实现证书动态轮转。 当然,Sidecar 和 SDS Server 的通信也需要保证自身的通信安全,存在以下两种方案: Sidecar 与 SDS Server 采用 mTLS 通信,采用静态证书方案,通过 Secret Mount 方式获取通信证书 Sidecar 与 SDS Server0 码力 | 19 页 | 808.60 KB | 6 月前3
2024 中国开源开发者报告Agent 逐渐成为 AI 应用的核心架构 68 | 谈开源大模型的技术主权问题 72 | 2024:大模型背景下知识图谱的理性回归 77 | 人工智能与处理器芯片架构 89 | 大模型生成代码的安全与质量 93 | 2024 年 AI 大模型如何影响基础软件行业中 的「开发工具与环境」 98 | 推理中心化:构建未来 AI 基础设施的关键 Part 1:中国开源开发者生态数据 04 | 56% 17.86% 16.91% 15.63% 15.41% TypeScript Rust YAML Visual Basic Verilog C C++ Python Kotlin C# Dart Arduino TypeScript连续两年成为了 Gitee年度增长最快编程语言 (2023年增长率为49.04%), 同样持续强势的还有Rust以及 C语言家族。 助自然语言解释,使得开发者更直观地理解代码结构和执行流程,增强智能编程的可视性和 交互性。 有些开发团队借助智能体和 RAG 技术检索历史上已知的代码缺陷模式和已知问题,从而比较 准确地识别潜在的缺陷和安全漏洞,甚至能够分析代码的功能意图,全面提升代码评审的能 力。 有些团队,根据 UI 设计图,让 LLM 自动生成相应的前端代码,大大减少了手动编码的时间, 加快了从设计到实现的流程。 430 码力 | 111 页 | 11.44 MB | 8 月前3
Nacos架构&原理
那么如何能够做到服务不重启就可以修改配置?所有就产生了四个基础诉求: 需要支持动态修改配置 需要动态变更有多实时 变更快了之后如何管控控制变更风险,如灰度、回滚等 敏感配置如何做安全配置 Nacos 架构 < 22 概念介绍 配置(Configuration) 在系统开发过程中通常会将⼀些需要变更的参数、变量等从代码中分离出来独立管理,以独立的配 置文件的形式存在。目的是让静态的系统工件或者交付物(如 制,防止集群抖动,超过 阈值后需要自动切换 server,但要防止请求风暴。 断网演练:断网场景下,以合理的频率进行重试,断网结束时可以快速重连恢复。 49 > Nacos 架构 5. 安全性 支持基础的鉴权,数据加密能力。 6. 低成本多语⾔实现 在客户端层面要尽可能多的支持多语言,至少要支持⼀个 Java 服务端连接通道,可以使用多个主 流语言的客户端进行访问,并且要考虑各种语言实现的成本,双边交互上要考虑 ng 消息 应用层自定 义,单 byte ack 自定义 kee palive fra me TCP+ 自定 义 自定义 kee palive filte r 性能 tps 安全性 TLS TLS TLS TLS TLS TLS 多语言支持 JAVA 支持 不支持 支持 支持 1.8+ >93% 支持 支持 GO 支持 不支持 支持 支持 1.12+ >93%0 码力 | 326 页 | 12.83 MB | 9 月前3
Coroutines and Structured Concurrency in Practice• nursery in Python trio • task group in Python asyncio • task scope in Rust • coroutine scope in Kotlin • async_scope in nvidia/stdexec We also call it a nursery (mnemonics: a place where your children0 码力 | 103 页 | 1.98 MB | 6 月前3
24-云原生中间件之道-高磊标准化能力-承载无忧-E2E云原生纵深安全保障DevSecOps-1 Applications Data Runtime Middleware OS Virtualization Servers Storage NetWorking PaaS 硬件与虚拟化厂商提供,如果是HCI架构, 作为总体集成方,会降低安全集成成本 可信计算环境:OS安全、TPM加密、TEE可信环境 云原生安全:镜像安全、镜像仓库安全、容器加固隔离、通信零信任 云原生安全:镜像安全、镜像仓库安全、容器加固隔离、通信零信任 (Istio零信任、Calico零信任、Cilium零信任、WorkLoad鉴权、WorkLoad 间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 RASP应用安全、数据安全、态势感知与风险隔离 由于云原生托管的应用是碎片化的,环境变化也是碎片化的,而且其业务类型越来越多,比如已经延展到边 缘计算盒子,此时攻击面被放大,在云原生环境下安全 是一个核心价值,需要立体纵深式的安全保障。 由于云原生DevOps环境追求效率以及运行态的动态治理能力,导致传统安全实施方法、角色、流程、技术 都发生了很多变化,适应这些变化是落地云原生安全的关键! 标准化能力-承载无忧-E2E云原生纵深安全保障-2-商业价值 腾讯安全战略研究部联合腾讯安全联合实验室近日共同发布《产业互联网安全十大趋势(2021)》(下简称《趋势》),基于2020年的产业实践和行业风向,0 码力 | 22 页 | 4.39 MB | 6 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502面对全球大模型产业之争,要打赢「三大战役」 AGI之战 应用场景之战 大模型安全之战 • 探索超越人类的超级人工 智能AGI • 不仅是科技之争,更是国 运之争 • 不发展是最大的不安全, 发挥举国体制优势,打赢 追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 创业公司得到DeepSeek加持,创业者拥有便宜领先的大模型,迎来 机遇,带来“iPhone时刻” 中国变成AI渗透率最高的国家,率先实现AI工业革命 37政企、创业者必读 人人智能 万物智能 数转智改 未来产业 科学研究 安全 应用爆发的六大方向 38政企、创业者必读 DeepSeek的开源和低成本使得个人也能够拥有自有大模型,实现超能力, 成长为超级个体 DeepSeek六大应用方向之一 人人智能:人人都要用AI 从数年缩短到几分钟,解开了生物学密码 成功预测了地球存在的2亿种蛋白质结构 45政企、创业者必读 DeepSeek典型的四大安全问题:客户端安全、Agent安全、知识安全、模型安全 360提出「以模制模」新解法,应对DeepSeek安全问题 DeepSeek六大应用方向之六 AI安全:实现安全的「自动驾驶」 46政企、创业者必读 大模型的六大能力 47 基本 能力 业务 能力 创新 能力0 码力 | 76 页 | 5.02 MB | 5 月前3
共 119 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12













