积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(23)Python(20)综合其他(6)人工智能(6)C++(3)

语言

全部英语(24)[zh](1)fj(1)日语(1)ro(1)zh(1)

格式

全部PDF文档 PDF(29)
 
本次搜索耗时 0.217 秒,为您找到相关结果约 29 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • 人工智能
  • C++
  • 全部
  • 英语
  • [zh]
  • fj
  • 日语
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM@AliOS

    INT8 & FP32 AiiOS ! 驱动万物智能 Alios TVM @ ARM CPU INT8 * Cache 芍四 Data FO Data FOData … QNNPACK Convolution 。,NHWC layout Cach, 浆百 FeU Cach- 区下 。, im2col + pack -35 1 129 中131 124有23152136 2 1.14 am omo oo Convolution Workload Performance AiOS 1驱动万物智能 Alios TVM @ ARM CPU INT8 Depthwise Convolution 。, NHWC layout 。 Using TVM schedule primitive completely 130 1.35 1.33. 1.15 116 111 09工08 工区 0.77 0.77 | | | Depthwise Convolution Workload Performance Alios TVM @ ARM CPU INT8 Performance Comparison @ rasp 3b+ AARCH64
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    batch size = 1 • 1.7x speedup on Inception asymmetric quantized model • Mobilenet requires depthwise convolution VNNI schedule • Symmetric model improves the speedup to 2.8x© 2019, Amazon Web Services,
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 亿联TVM部署

    ����������� �� �������������������� 1. OpenVino a black box, can not deploy our network(with depthwise conv2d, ) 2. TVM can not only deploy our network, but also get a good performance gain by autotuning
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 Data Is All You Need for Fusion

    fern::Interval (y, out.y_start, out.y_start + out.y_len, l fern::Compute( fern::Producer(Convolution Input Filters Convolution 65 }) )) template void gemm(Matrix A,Matrix B,Matrix fern::Interval void conv(image input, image filter, int StrideArg, image out);Convolution Input Filters Convolution 66 }) )) template void gemm(Matrix A,Matrix B,Matrix fern::Interval void conv(image input, image filter, int StrideArg, image out);Convolution Input Filters Convolution 67 }) )) template void gemm(Matrix A,Matrix B,Matrix fern::Interval
    0 码力 | 151 页 | 9.90 MB | 6 月前
    3
  • pdf文档 Adventures in SIMD Thinking (Part 2 of 2)

    problems • Intra-register sorting • Fast linear median-of-seven filter • Fast small-kernel convolution • Faster (?) UTF-8 to UTF-32 conversion (with AVX2) • No heavy code, but lots of pictures • Small-Kernel Convolution 3 CppCon 2020 - Adventures in SIMD ThinkingCopyright © 2020 Bob Steagall K E W B C O M P U T I N G Convolution • f is a signal • g is a kernel • Output f*g is the convolution • Every CppCon 2020 - Adventures in SIMD Thinking 4Copyright © 2020 Bob Steagall K E W B C O M P U T I N G Convolution CppCon 2020 - Adventures in SIMD Thinking 5 S = s0 s1 s2 s3 s4 s5 s6
    0 码力 | 135 页 | 551.08 KB | 6 月前
    3
  • pdf文档 Gluon Deployment

    Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Effects of Convolution operators using TVM AWS DeepLens Acer aiSage NVIDIA Jetson Nano Speedup 0 2 4 6 8 SSD_MobileNet1
    0 码力 | 8 页 | 16.18 MB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    compute. @autotvm.register_ topi_schedule(schedule_conv2d_nchw,pvr, [direct]) convolution def schedule_conv2d_nchw_pvr(cfg, outs):
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    DPU Processor (xDNNv3) >> 3 ˃ Configurable Overlay Processor ˃ DNN Specific Instruction Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency ˃
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Adventures in SIMD Thinking (Part 1 of 2)

    problems • Intra-register sorting • Fast linear median-of-seven filter • Fast small-kernel convolution • Faster (?) UTF-8 to UTF-32 conversion (with AVX2) • No heavy code, but lots of pictures •
    0 码力 | 88 页 | 824.07 KB | 6 月前
    3
  • pdf文档 Python 标准库参考指南 3.13

    batched(starmap(math.sumprod, product(m1, transpose(m2))), n) def convolve(signal, kernel): """Discrete linear convolution of two iterables. Equivalent to polynomial multiplication. Convolutions are mathematically commutative; consumed before the calculations begin. Article: https://betterexplained.com/articles/intuitive-convolution/ Video: https://www.youtube.com/watch?v=KuXjwB4LzSA """ # convolve([1, -1, -20], [1, -3]) → 1 Notwithstanding the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that was previously distributed under the GNU General Public License (GPL), the law of
    0 码力 | 2246 页 | 11.74 MB | 9 月前
    3
共 29 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
TVMAliOSMeetupQuantization亿联部署DataIsAllYouNeedforFusionAdventuresinSIMDThinkingPartofGluonDeploymentAlibabaAILabsXDNNNov2019Python标准参考指南3.13
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩