积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(91)Python(55)Julia(18)C++(16)Conda(16)数据库(14)TiDB(14)Django(13)云计算&大数据(11)VirtualBox(11)

语言

全部英语(97)中文(繁体)(10)中文(简体)(9)中文(简体)(2)英语(2)

格式

全部PDF文档 PDF(112)其他文档 其他(7)PPT文档 PPT(1)
 
本次搜索耗时 0.719 秒,为您找到相关结果约 120 个.
  • 全部
  • 后端开发
  • Python
  • Julia
  • C++
  • Conda
  • 数据库
  • TiDB
  • Django
  • 云计算&大数据
  • VirtualBox
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TIDB The Large Scale Relational Database Solution

    that would most benefit from this Database solution are: TiDB focuses on scalability, database clustering, and its ability to automatically scale horizontally (across nodes/instances/ machines), another
    0 码力 | 12 页 | 5.61 MB | 6 月前
    3
  • pdf文档 Data Structures That Make Video Games Go Round

    Hood Hashing Because the probe sequence length (PSL) keeps growing, inserted elements starts clustering around the mean of the container. Ideally, you would keep the PSL for each element roughly the
    0 码力 | 196 页 | 3.03 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    flagship Scorpio Fabric products for head-node PCIe connectivity and backend AI accelerator scale-up clustering. - Astera Labs CEO Jitendra Mohan, 2/25 Revenue, $MM AI Monetization = Compute Services $0
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Python 标准库参考指南 2.7.18

    left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using zip(*[iter(s)]*n). zip() 与 * 运算符相结合可以用来拆解一个列表: >>> x tabs in a string replacing them by one or more spaces, depending on the current column and the given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using izip(*[iter(s)]*n). izip() should only be used with unequal
    0 码力 | 1552 页 | 7.42 MB | 9 月前
    3
  • pdf文档 Python 标准库参考指南 2.7.18

    left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using zip(*[iter(s)]*n). zip() 与 * 运算符相结合可以用来拆解一个列表: >>> x tabs in a string replacing them by one or more spaces, depending on the current column and the given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using izip(*[iter(s)]*n). izip() should only be used with unequal
    0 码力 | 1552 页 | 7.42 MB | 9 月前
    3
  • pdf文档 Python 标准库参考指南 2.7.18

    left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using zip(*[iter(s)]*n). zip() 与 * 运算符相结合可以用来拆解一个列表: >>> x tabs in a string replacing them by one or more spaces, depending on the current column and the given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using izip(*[iter(s)]*n). izip() should only be used with unequal
    0 码力 | 1552 页 | 7.42 MB | 9 月前
    3
  • pdf文档 TiDB v8.5 Documentation

    · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6722 17.3.3 Column Family (CF) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · limitations because it does not support global indexes. For example, the unique key must use every column in the table’s partition expression. If the query condition does not use the partition key, the query address issues of Checksum V1 in verifying old values in Update or Delete events after ADD COLUMN or DROP COLUMN operations. For clusters created in v8.4.0 or later, or clusters upgraded to v8.4.0, TiDB
    0 码力 | 6730 页 | 111.36 MB | 10 月前
    3
  • pdf文档 TiDB v8.4 Documentation

    limitations because it does not support global indexes. For example, the unique key must use every column in the table’s partition expression. If the query condition does not use the partition key, the query address issues of Checksum V1 in verifying old values in Update or Delete events after ADD COLUMN or DROP COLUMN operations. For clusters created in v8.4.0 or later, or clusters upgraded to v8.4.0, TiDB index is en- abled by de- fault. You only need to add the key- word GLOBAL to the corre- spond- ing column when execut- ing CREATE �→ �→ TABLE �→ or ALTER �→ TABLE �→ to create a global index. 49 Variable
    0 码力 | 6705 页 | 110.86 MB | 10 月前
    3
  • pdf文档 TiDB v8.3 Documentation

    all columns. To enable this feature, you need to manually set the system variable tidb_ �→ analyze_column_options to PREDICATE. For newly deployed clusters, this feature is enabled by default. For analytical analytical systems with many random queries, you can set the system variable tidb_analyze_column_options to ALL to collect statistics for all columns, to ensure the performance of random queries. For other other types of systems, it is recommended to keep the default setting (PREDICATE) of tidb_analyze_column_options to collect statistics for only necessary columns. For more information, see documentation.
    0 码力 | 6606 页 | 109.48 MB | 10 月前
    3
  • pdf文档 TiDB v8.2 Documentation

    the cluster size. 44 Variable name Change type Description tidb_ �→ analyze �→ _ �→ skip �→ _ �→ column �→ _ �→ types �→ Modified Starting from v8.2.0, TiDB does not collect columns of MEDIUMTEXT �→ and the performance is improved by 3 to 6 times #53246 @D3Hunter • Improve the logic of matching multi-column indexes using expressions like ((a �→ = 1 and b = 2 and c > 3)or (a = 4 and b = 5 and c > 6))and to 1048576 to avoid causing TiDB Server OOM when setting it too large #53312 @djshow832 • Improve column pruning for MPP execution plans to improve TiFlash MPP exe- cution performance #52133 @yibin87 •
    0 码力 | 6549 页 | 108.77 MB | 10 月前
    3
共 120 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 12
前往
页
相关搜索词
TIDBTheLargeScaleRelationalDatabaseSolutionDataStructuresThatMakeVideoGamesGoRoundTrendsArtificialIntelligencePython标准参考指南2.718TiDBv8Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩