Curve元数据节点高可用© XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的mds节点为主,等待节点为备;主节点的服务挂掉之后,备节点能启动服务,尽量减小服务中断的时间。 需要解决的问题就是:如何确定主备节点。 家熟知的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制: TTL和CAS。TTL(time to live)指的是给一个key设置一个有效期,到期后key会被0 码力 | 30 页 | 2.42 MB | 6 月前3
在Kubernetes上部署高可用的Service Mesh监控在 k8s 上部署高可用的 service mesh 监控 pctang@caicloud.io 唐鹏程 才云科技TOC Solving issues in a new way Monitoring your service mesh Old-school monitoringPrometheus + Kubernetes ● A time series based monitoring0 码力 | 35 页 | 2.98 MB | 6 月前3
24-云原生中间件之道-高磊进行静态扫描,尽可能前置,在IDE编写代码或者提交代码时进行,将极 大优化整体效率和成本 可以无视环境随时可以进行,覆盖漏洞类型全面, 可以精确定位到代码段 路径爆炸问题,并一定与实际相符合,误报率较 高。 DAST(动态安全应用 程序安全测试) 黑盒测试,通过模拟业务流量发起请求,进行模糊测试,比如故障注入 或者混沌测试 语言无关性,很高的精确度。 难以覆盖复杂的交互场景,测试过程对业务造成 较大的干扰,会产生大量的报错和脏数据,所以 调整困难、只能满 足一定的吞吐量要 求 存算分离: 自动调整、拓展能 力强,满足更大吞 吐量 存储自动扩缩容 手工填加机器, 手工同步 完全自动化 高性能 存在性能瓶颈 类似日志方式的顺 序写,性能高 易用程度 封闭体系,集成各 类优秀能力较差 集成能力强,多模 态接口,兼容各类 协议 可用性、稳定性 需要强大的旁路运 维能力 简化运维、自动化 容量和故障转移 云原生数据库其特点,使得应用场 景会更加广泛 Chunk Data Chunk • 云原生的本质在于为云这种弹性资源下能够为应用提供 稳定的基础架构,所以云原生数据库相对于传统数据库 最大的不同也在这个方面:弹性 • 对于数据存储的高性能、高稳定性、高拓展、资源成本 等等都需要同时满足(和传统CAP相悖) • 接入层需要能够根据规则的路由,以及兼容各类协议接 口以及数据模型,并能根据应用的规模来自动拓展。 • 实现HTAP(OLTP+OLAP),将在线事务|分析混合计算模型0 码力 | 22 页 | 4.39 MB | 6 月前3
Service Mesh 高可用在企业级生产中的实践0 Service Mesh 高可用在企业 级生产中的实践 罗广明 百度高级研发工程师1/总页数 讲师介绍 • 罗广明、百度高级工程师 • ServiceMesher 社区(servicemesher.com)治理委员会核心成员 • 云原生社区(cloudnative.to)联合创始成员 • 百度云智学院认证讲师 • 目前在「百度云云原生团队」负责微服务治理与相关中间件研发 • 对云 注册中心与 高可用方案 通过治理策略 保证服务高可用3/总页数 Service Mesh 与 Spring Cloud 应用的互通、共治 /014/总页数 优点 • 微服务架构的集大成者 • 轻量级组件 • 开发灵活、简便 • 社区生态强大、活跃度高 Spring Cloud 的优缺点 缺点 • 仅适用于 JAVA 应用、Spring Boot 框架 • 侵入性强 • 升级成本高、版本碎片化严重 升级成本高、版本碎片化严重 • 内容多、门槛高 • 治理功能仍然不全5/总页数 优点 • 微服务治理与业务逻辑解耦 • 异构系统的统一治理 • 三大技术优势: • 可观察性 • 流量控制 • 安全 Service Mesh 的优缺点 缺点 • 增加了复杂度 • 整体链路的复杂度 • 操作运维的复杂度 • 需要更专业的运维技能 • 带来延迟 • 平台的适配 Istio-Handbook:Service0 码力 | 38 页 | 1.38 MB | 6 月前3
23-云原生观察性、自动化交付和 IaC 等之道-高磊n Component 微服务 数据库 MQ Cache Trait 灰度 监控告警 弹性扩缩容 高可用 负载均衡 客户环境 • 关注点分离:开发者关注应用本身,运维人员关注模块化运维 能力,让应用管理变得更轻松、应用交付变得更可控; • 平台无关与高可扩展:应用定义与平台层实现解耦,应用描述 支持任意扩展和跨环境实现; • 模块化应用运维特征:可以自由组合和支持模块化实现的运维 现交个各个开源项目和 厂商去实现,譬如: kubevela。 OAM实现原理分析 • OAM是更高级的抽象, 执行面打包都是通用 格式,比如HELM,很 好的兼容了现有的基 础设施,无论怎样的 基础设施,都能在高 层保持一致的情况下, 在差异化的环境下运 行,而让业务研发人 员更加关注业务,而 不是基础设施本身。 • OAM本身就是基础设 施即代码的典范设计, 在中间层隔离了用户 使用和底层执行体, 进一步加强了统一性。0 码力 | 24 页 | 5.96 MB | 6 月前3
22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊云原生学院 第 22 期 云原生产品与架构系列:第1讲 曾任阿里巴巴、华为架构师、深信服云原生产品规划主管 10月27日(周三)晚8点-9 点 高磊 主 办 方 : 互 动 平 台 : 式承载微服务应用。但在一个虚机/服务器上 部署多个微服务会产生如下问题—— • 资源预分配,短时间内难以扩展 • 缺乏隔离性,服务相互抢占资源 • 增加环境、网络(端口)和资源管理的复杂性,治理成本高 • 监控粒度难以满足微服务应用运维的需要,线上问题难以排查定位,往往需要研发介入 我们需要一种新型的、为云而生的业务承载平台,去应对上述问题。 微服务应 用 大型 单体 应用 VM/服务器 VM/服务 Docker: 抽象云资源,使 得更容易使用 微服务: 加快业务迭代更新 从支持应用不同维度发展,最终走在了一起 2010年WSO2提出 类云原生的概念 云原生应用相比传统应用的优势 低成本 高敏捷 高弹性 云原生应用 传统应用 部署可预测性 可预测性 不可预测 抽象性 操作系统抽象 依赖操作系统 弹性能力 弹性调度 资源冗余多 缺乏扩展能力 开发运维模式 DevOps 瀑布式开发 部门孤立0 码力 | 42 页 | 11.17 MB | 6 月前3
27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 高算力的场景,需要 实现云边一体纳管, 简化运维,降低成本, 客户专注于业务领域。 • 无论是AIoT还是边缘 计算,核心要素是计 算,计算平台的训练 平台位于云端,而推 理计算位于BOX端,并 且能够适应各类算法 3亿美元;而与之对应的去中心化云存储市场约30 亿美元,去中心化云计算市场约100亿美元。未来,10 年到20年,去中心化云计算、云储存市场有望实现10年 100倍的增长,达到 的规模。 高级能力-精益化运维-云原生AIOps • 传统云原生的运维,虽然依赖于度量, 但是通过监控、日志分析、跟踪链等发 现问题根因所在周期长,依靠人的经验 (并且人的经验无法数据化沉淀),而 得到问题根因后,只能通过人工去修复0 码力 | 20 页 | 5.17 MB | 6 月前3
DeepSeek从入门到精通(20250204)优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Googl 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 提示语示例 决策需求 验证性需求 "为降低物流成本,现有两种方案: ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ①0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Googl 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 提示语示例 决策需求 验证性需求 "为降低物流成本,现有两种方案: ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ①0 码力 | 103 页 | 5.40 MB | 8 月前3
Hello 算法 1.2.0 简体中文 C# 版也是一种常见做法,但对于面向求职的人来说,毕业论文、投递简历、准备笔试和面试已经消耗了大部分精 力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小 到一个家庭,社会的主要组织形式呈现出“树”的特征;冬天的衣服就像“栈”,最先穿上的最后才能脱下; hello‑algo.com 2 0.1 关于本书 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。 ‧ 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。 ‧ 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。 0.1.1 读者对象0 码力 | 379 页 | 18.48 MB | 10 月前3
共 130 条
- 1
- 2
- 3
- 4
- 5
- 6
- 13













