27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 云端分析系统 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化- 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 高算力的场景,需要 实现云边一体纳管, 简化运维,降低成本, 客户专注于业务领域。 • 无论是AIoT还是边缘 计算,核心要素是计 算,计算平台的训练 平台位于云端,而推 理计算位于BOX端,并 且能够适应各类算法 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景0 码力 | 20 页 | 5.17 MB | 6 月前3
进击的 Traefik | 云原生边缘路由器探秘进击的 Traefik 杨川胡(阳明) 知群后台负责人 2019.10.26 Service Mesh Meetup #7 成都站 云原生边缘路由器探秘杨川胡(阳明) 知群后台负责人,原小米视频后台高级研发 ,《Prometheus 深入浅出》作者,「k8s技 术圈」社区作者,现阶段专注于云原生技术 领域,希望成为一个有产品思维的工程师1 Traefik 介绍 2 Traefik Traefik 2.0 核心概念 3 Traefik With Docker 4 Traefik With KubernetesTraefik 是什么? • 云原生的边缘路由器 • 让部署微服务更加便捷而诞生的现 代 HTTP 反向代理、负载均衡工具 • 它支持多种后台 (Docker, Swarm, Kubernetes, M arathon, Mesos, Consul, Etcd, Z ookeeper •其他功能......1 Traefik 介绍 2 Traefik 2.0 核心概念 3 Traefik With Docker 4 Traefik With KubernetesTraefik 是一个边缘路由器Traefik 自动服务发现Traefik 2.0 架构 • Providers 用来自动发现平台上的服务 • Entrypoints 监听传入的流量(端口等… ) • Routers 分析请求(host0 码力 | 35 页 | 8.58 MB | 6 月前3
在网格的边缘试探:企业 Istio 试水指南在网格的边缘试探 企业Istio试水指南 崔秀龙 2019.1.6 Service Mesh Meetup #5 广州站感谢 • 蚂蚁金服 • ServiceMesher 社区 • Istio贡献者们关于我自己 • HPE(前惠普)软件分析师 • 从业第二十个年头,中老年乙方技术人员 • Istio、Kubernetes项目成员 • Istio.io全球贡献第二 • Kubernetes权威指南系列作者之一 • 访问控制和频率限制 • …Istio目前的突出问题 • API稳定性问题:流量管理也仅仅是v1alpha3,用alpha特性发布 1.0的情况似乎比较罕见。 • 发布进度和质量:大版本以月计算的发布延迟,据我所知的 Release撤回发生了两次。 • 世纪难题:多出一层Sidecar造成的延迟。 • Pilot的性能,近几个版本一直在出问题。 • Mixer按照我个人的看法,API较0 码力 | 19 页 | 11.41 MB | 6 月前3
函数计算在双11小程序场景中的应用阿里云函数计算技术专家 函数计算在双11小程序场景中的应用 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT自我介绍 •吴天龙(花名: 木吴) •阿里云函数计算技术专家 •2013 年加入阿里云,参与分布式数据库, 对象存储等产品的开发。现任阿里云函数 计算架构师,聚焦于 Serverless 产品功 能和大规模资源伸缩调度、性能优化等系 统核心能力的研发。❖ 函数计算介绍 ❖ ❖ 双11小程序场景介绍 ❖ 技术挑战 ❖ Demo 目录函数计算-介绍 • 通用Serverless计算平 台 • 与云端事件源无缝集成 • 弹性伸缩,按量付费函数计算-介绍双11小程序场景介绍小程序场景的挑战 n 安全隔离 n 开发效率 n 大量的小程序是不活跃的 n 活动高峰期流量激增函数计算-冷启动优化 Download & Extract Code User Code 10ms~60000ms 预留实例 0ms 0ms函数计算-弹性伸缩 C1 C1 C2 C1 C2 时间 t1 t2函数计算-预留实例 • 预留实例:性能好 • 按量实例:按需使用函数计算-预留实例 预留实例 按量实例 效果 0 0 禁止调用 10 0 只使用预留实例,固定费用 0 10 只使用按量实例,按需付费 10 5 混合模式,兼顾性能和成本函数计算 DemoThank you ! 关注“阿里巴巴云原生”公众号0 码力 | 13 页 | 6.95 MB | 6 月前3
22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊5 年 就 已 经 存 在 2003年Docker兴起,但云原生架构依然 没有出现,Docker公司还差点死了 1 9 9 6 年 戴 尔 提 出 云 计 算 理 念 2006年亚马逊率先推出 了弹性计算云(EC2) 分水岭 云原生 Docker: 抽象云资源,使 得更容易使用 微服务: 加快业务迭代更新 从支持应用不同维度发展,最终走在了一起 2010年WSO2提出 类云原生的概念 云原生应用相比传统应用的优势 开发运维模式 DevOps 瀑布式开发 部门孤立 服务架构 微服务解耦架构 单体耦合架构 恢复能力 自动化运维 快速恢复 手工运维 恢复缓慢 云原生应用相比传统应用的优势(例子) 来实现计算资源向应用的无缝融合,以极简稳定的、 自动化的方式向上提供业务价值,并直面交付成本问题 企业管理层 业务架构师或者PM 产品|数据|应用|技术架构师 架构咨询团队 企业自己决定 云原生平台+架构咨询团队 构和ACK容器的组合,可以实现1小时扩容1百万个容器,混部利用 率提升50%,万笔交易成本4年下降80%。 • 拥有国内最大计算平台、顶级实时计算能力。大数据平台批处理单日计算数据量达到1.7EB,实时计算峰值每秒30亿条记录; 云原生PolarDB读写性能提高50%+,计算资源利用率提高60%+。 • 云原生中间件首次实现自研、商用、开源的“三位一体”,通过阿里云服务全球客户。云原生中间件服务框架峰值调用量超百亿0 码力 | 42 页 | 11.17 MB | 6 月前3
阿里云容器服务大促备战安全加固 人工智能 大数据 离线计算 全链路压测 边缘计算 敏捷调度 故障演练人为失误 http://integracon.com/11-leading-causes-downtime/ 45%最佳实践之容器化DevOps 杭州 容器集群 集群 伦敦 Serverless集群 自动安全扫描 镜像签名 全球自动分发 智能构建 上海 边缘集群 ECS ECI 应用定义 -analysis-key-players-regional- outlook-and-forecast-study/492024云边端一体化协同双十一直播的背后 50% 5倍在线与离线 异构计算能力 ECS, EBM, GPU, FPGA, ECI 高性能网络 VPC, ENI, RDMA, SLB, DNS Public Cloud Edge Computing Private Cloud Horizontal scalable Mysql Kafka TIDB Elasti c Search Tensor Flow Spark Flink Redis Zoo keeper云原生实时计算与人工智能@微博 2.4倍性能提升 百亿实时样本 万亿维度模型云原生基础设施 新生态 新算力 新基石 全球化部署 单集群万节点规模 云边端一体化 延时降低75% 混合云2.0架构 交付效率提升3倍0 码力 | 17 页 | 17.74 MB | 6 月前3
24-云原生中间件之道-高磊Middleware OS Virtualization Servers Storage NetWorking PaaS 硬件与虚拟化厂商提供,如果是HCI架构, 作为总体集成方,会降低安全集成成本 可信计算环境:OS安全、TPM加密、TEE可信环境 云原生安全:镜像安全、镜像仓库安全、容器加固隔离、通信零信任 (Istio零信任、Calico零信任、Cilium零信任、WorkLoad鉴权、WorkLoad 间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 RASP应用安全、数据安全、态势感知与风险隔离 由于云原生托管的应用是碎片化的,环境变化也是碎片化的,而且其业务类型越来越多,比如已经延展到边 缘计算盒子,此时攻击面被放大,在云原生环境下安全是一个核心价值,需要立体纵深式的安全保障。 由于云原生DevOps环境追求效率以及运行态的动态治理能力,导致传统安全实施方法、角色、流程、技术 都发生了很多 信息利用规范化,数字安全合规管理将成为企业的必备能力。与此同时,企业还 应将安全作为“一把手工程”,在部署数字化转型的同时,推进安全前置。 前沿的数字化技术也让产业安全有了更多内涵。5G、AI、隐私计算等技术在构筑数字大楼的同时,不仅带来了全新的安全场景,也成为网络安全攻防 当中的利器;2020年井喷的远程办公,拷问传统安全边界防线,让“零信任”这一有着十年历史的理念再次受到关注,成为企业构建后疫情时代安全体系0 码力 | 22 页 | 4.39 MB | 6 月前3
09-harbor助你玩转云原生-邹佳Zou(邹),VMware中国研发中心主任工程师, Harbor开源项目架构师及核心维护者,拥有十多年软件研发及 架构经验,获得PMP资格认证及多项技术专利授权。曾在HPE、 IBM等多家企业担任资深软件工程师和架构师,专注于云计算及 云原生等相关领域的研究与创新。著有《Harbor权威指南》等 书籍。 >> Email: szou@vmware.com >> GitHub ID: steven-zou >> Slack: Docker Client push pull pull 制品的高效分发-复制 [2] 主从模式(/中心-边缘模式) 制品的高效分发-缓存 • 在项目级别提供“缓存”能力 • 已缓存下来的制品与“本地”制品无异 • 相关的管理策略可以应用到缓存的镜像上,比 如配额、扫描等 • 目前仅支持上游Dockerhub*和其它Harbor, 基于漏洞严重程度或者签名状态 通过设置不可变规则来避免特定Tag被覆盖或者误删除 制品安全分发-不可变Tag 资源清理与垃圾回收 [1] 通过Artifact保留策略实现资源清理:根据用户设置的保留策略计算得出需要保留的 资源而删除不需要保留的资源 不释放存储空间/释放配额 注意:不可变Tag一定会被保留 资源清理与垃圾回收 [2] 通过垃圾回收可以清理存储空间中的无用数据,V2.1之前为阻塞式GC,V20 码力 | 32 页 | 17.15 MB | 6 月前3
清华大学 普通人如何抓住DeepSeek红利t v B 4 G 0 G p y 8 U I q e T 9 M 6 Deepseek的能力图谱 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场 景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 专区的技术参数,用数据列表形式 呈现。” 关键技巧: p 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 生命线工程: 孕妇救援通道: ✓ 自动生成医疗档案二维码 ✓ 无人机勘察可行路线 ✓ 协调民间救援队GPS定位 老人转移方案: ✓ 调取智能手环历史活动轨迹 ✓ 社区志愿者网络即时广播 ③ 企业级应急: 启动边缘计算节点转移关键数据 生成政府灾情报告模板(自动填充损失评估) ④ 社会协作: 创建临时物资交换区块链账本 多语言求援信息自动生成(对接领事馆系统) 技术红利: 救援响应速度提升3.2倍,资产损失减少78%,危机持续时间压0 码力 | 65 页 | 4.47 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。 多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5 垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 , 对 模 型 进 行 最 终 的 强 化 学 习 , 以 对 齐 人 类 偏好。 降本提能:架构创新,技术增效 DeepSeek通过架构创新和模型蒸馏技术,在提升模型性能的同时,显著降低计算成本和内存占用。这些技术不仅在 长文本处理、代码生成、数学推理等任务中表现出色,还为大模型的轻量化和实际应用提供了有力支持。 模型蒸馏技术 DeepSeek采用模型蒸馏技术,通过将知识从大型复杂模型 系列和Llama 系列 架构创新 通过将模型划分为多个专家模块,实 现高效计算和推理。DeepSeek通过 无辅助损失的自然负载均衡和共享专 家机制,解决了专家模块工作量不平 衡的问题。 混合专家(MoE)架构 通过低秩压缩减少推理时的内存占用, 同时保持与传统多头注意力(MHA) 相当的性能。MLA在训练中减少了 内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制0 码力 | 85 页 | 8.31 MB | 8 月前3
共 113 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12













