 13 Istio 流量管理原理与协议扩展 赵化冰Istio 流量管理原理与协议扩展 赵化冰 赵化冰 腾讯云 服务网格团队 https://zhaohuabing.com Service Mesh Service Mesh Layer 处理服务间通信(主要是七层通信)的云原生基础设施层: Service Mesh 将各个服务中原来使用 SDK 实现的七层通信相关功能抽象 出来,使用一个专用层次来实现,Service Mesh 对应用透明,因此应用0 码力 | 20 页 | 11.31 MB | 6 月前3 13 Istio 流量管理原理与协议扩展 赵化冰Istio 流量管理原理与协议扩展 赵化冰 赵化冰 腾讯云 服务网格团队 https://zhaohuabing.com Service Mesh Service Mesh Layer 处理服务间通信(主要是七层通信)的云原生基础设施层: Service Mesh 将各个服务中原来使用 SDK 实现的七层通信相关功能抽象 出来,使用一个专用层次来实现,Service Mesh 对应用透明,因此应用0 码力 | 20 页 | 11.31 MB | 6 月前3
 宋净超 从开源 Istio 到企业级服务:如何在企业中落地服务网格从开源 Istio 到企业服务 ——如何在企业中落地服务网格 From Istio OSS to Enterprise Service Mesh 宋净超(Jimmy Song) September 24, 2022 Shanghai, China Cloud Native Application Networking Secure, Observe and manage microservices0 码力 | 30 页 | 4.79 MB | 6 月前3 宋净超 从开源 Istio 到企业级服务:如何在企业中落地服务网格从开源 Istio 到企业服务 ——如何在企业中落地服务网格 From Istio OSS to Enterprise Service Mesh 宋净超(Jimmy Song) September 24, 2022 Shanghai, China Cloud Native Application Networking Secure, Observe and manage microservices0 码力 | 30 页 | 4.79 MB | 6 月前3
 服务增强器社区介绍ServiceMesher 社区介绍 宋净超(Jimmy Song) 2019年12月28 日ServiceMesher 社区于 2018 年 4 月 由蚂蚁金服发起成立。 20 个月 社区微信交流群拥有超过 4000+ 成员。 4000+ 社区成员来自 3000+ 企业。 3000+ 成立时间 /01 社区概况 社区成员 成员企业 9 场 线下 meetup 分别于杭州、北京、上海、深圳、广州、 分别于杭州、北京、上海、深圳、广州、 成都等地举办了 9 场 meetup。/02 社区创始人&管理委员会成员 敖小剑 蚂蚁金服 宋净超 蚂蚁金服 罗广明 百度 马若飞 FreeWheel 邱世达 博云 钟华 腾讯 孙海洲 中科院计算所 吴钧泽 好未来 殷龙飞 北控三兴 赵化冰 中兴通讯ServiceMesher 社区成立以来组织了一系列翻译活动,如: • Envoy 官方文档 •0 码力 | 7 页 | 20.77 MB | 6 月前3 服务增强器社区介绍ServiceMesher 社区介绍 宋净超(Jimmy Song) 2019年12月28 日ServiceMesher 社区于 2018 年 4 月 由蚂蚁金服发起成立。 20 个月 社区微信交流群拥有超过 4000+ 成员。 4000+ 社区成员来自 3000+ 企业。 3000+ 成立时间 /01 社区概况 社区成员 成员企业 9 场 线下 meetup 分别于杭州、北京、上海、深圳、广州、 分别于杭州、北京、上海、深圳、广州、 成都等地举办了 9 场 meetup。/02 社区创始人&管理委员会成员 敖小剑 蚂蚁金服 宋净超 蚂蚁金服 罗广明 百度 马若飞 FreeWheel 邱世达 博云 钟华 腾讯 孙海洲 中科院计算所 吴钧泽 好未来 殷龙飞 北控三兴 赵化冰 中兴通讯ServiceMesher 社区成立以来组织了一系列翻译活动,如: • Envoy 官方文档 •0 码力 | 7 页 | 20.77 MB | 6 月前3
 Service Mesh是下一代SDN吗:从通信角度看Service Mesh的发展Service Mesh是下一代SDN吗? 从通信的角度看Service Mesh的发展 赵化冰 中兴通讯 软件专家/Istio Committer 2019.10.26 Service Mesh Meetup #7 成都站什么是Service Mesh?- by Willian Morgan(Buoyant) A service mesh is a dedicated infrastructure0 码力 | 27 页 | 11.99 MB | 6 月前3 Service Mesh是下一代SDN吗:从通信角度看Service Mesh的发展Service Mesh是下一代SDN吗? 从通信的角度看Service Mesh的发展 赵化冰 中兴通讯 软件专家/Istio Committer 2019.10.26 Service Mesh Meetup #7 成都站什么是Service Mesh?- by Willian Morgan(Buoyant) A service mesh is a dedicated infrastructure0 码力 | 27 页 | 11.99 MB | 6 月前3
 Hello 算法 1.2.0 繁体中文 Ruby 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 372 页 | 18.75 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Ruby 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 372 页 | 18.75 MB | 10 月前3
 Hello 算法 1.2.0 繁体中文 C# 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 379 页 | 18.79 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 C# 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 379 页 | 18.79 MB | 10 月前3
 Hello 算法 1.2.0 繁体中文 Python 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 364 页 | 18.74 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Python 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 364 页 | 18.74 MB | 10 月前3
 Hello 算法 1.2.0 繁体中文 Dart 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 378 页 | 18.77 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Dart 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 378 页 | 18.77 MB | 10 月前3
 Hello 算法 1.2.0 繁体中文 Go 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 385 页 | 18.80 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Go 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 385 页 | 18.80 MB | 10 月前3
 Hello 算法 1.2.0 繁体中文 Kotlin 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 382 页 | 18.79 MB | 10 月前3 Hello 算法 1.2.0 繁体中文 Kotlin 版記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。因此 在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素。比如,演算法所佔用的記憶體峰值不應 超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的 記憶體空間內。 如圖 3‑3 所示,物理結構反映了資料在計算機記憶體中的儲存方式,可分為連續空間儲存(陣列)和分散空 型別使用 UTF‑16 編碼,每個字元佔用 2 位元組。這是因為 Java 語言設計之初,人們 認為 16 位足以表示所有可能的字元。然而,這是一個不正確的判斷。後來 Unicode 規範擴展到了超 過 16 位,所以 Java 中的字元現在可能由一對 16 位的值(稱為“代理對”)表示。 ‧ JavaScript 和 TypeScript 的字串使用 UTF‑16 編碼的原因與 Java 類似。當 Microsoft 設計的,而 Microsoft 的很多技術(包 括 Windows 作業系統)都廣泛使用 UTF‑16 編碼。 由於以上程式語言對字元數量的低估,它們不得不採取“代理對”的方式來表示超過 16 位長度的 Unicode 字元。這是一個不得已為之的無奈之舉。一方面,包含代理對的字串中,一個字元可能佔用 2 位元組或 4 位 元組,從而喪失了等長編碼的優勢。另一方面,處理代理對需要額外增加程式碼,這提高了程式設計的複雜0 码力 | 382 页 | 18.79 MB | 10 月前3
共 76 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8













