Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . 88 5. 使用结构体组织相关联的数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1. 结构体的定义和实例化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2. 结构体示例程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2. match 控制流结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 26 天前3
2024 中国开源开发者报告、李彦宏等一众大佬给出了一致的答案——智 能体(AI Agent)。2025,将会是智能体元年。 什么是智能体?目前业界一致认可的公式是“智能体=LLM+记忆+规划+工具”: 30 / 111 大模型充当智能体的“大脑”,负责对任务进行理解、拆解、规划,并调用相应工具以完成 任务。同时,通过记忆模块,它还能为用户提供个性化的服务。 智能体为什么是“算力墙”前 AI 产品的最优解决方案?这一问题的底层逻辑包含两个方面。 产品的最优解决方案?这一问题的底层逻辑包含两个方面。 1. LLM 是目前已知最好的智能体底层技术。 智能体作为学术术语由来已久,从上世纪的“符号、专家系统”【1】,到十年前风头无两的 强化学习(代表作 AlphaGo【3】),再到现在的 LLM,agent 底层技术经历了三个大的阶段。 符号系统的缺点在于过于依赖人工定义的“符号”和“逻辑”,强化学习苦于训练数据的匮 乏和“模态墙”,而 LLM 一次性解决这些问题。 需要如何使 用搜索引擎这个外部工具即可。大模型可以在搜索结果上做进一步的信息筛选和优化,而搜索引 擎弥补了大模型的知识缺陷,实现了 1+1>=2 的效果。 RAG 可以被理解为智能体的最简单形式。未来的智能体可以实现多种工具的混合使用,甚 至多智能体协作,这不是猜想,我们已经在学术界看到了惊艳的早期方案【6,7】。 “四把钥匙”解锁潜力 31 / 111 1. 领域模型小型化、平台化会成为新趋势。0 码力 | 111 页 | 11.44 MB | 8 月前3
Comprehensive Rust(简体中文) 202412Comprehensive Rust Martin Geisler 目录 欢迎来到 Comprehensive Rust 10 1 授课 12 1.1 课程结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 键盘快捷键 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10 用户定义的类型 48 10.1 结构体 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10.2 元组结构体 . . . . . . . . . . . . . . . . . . . . . . . . . . 23 结构体生命周期 128 23.1 生命周期注解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 23.2 函数调用中的生命周期 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 23.3 数据结构中的生命周期0 码力 | 359 页 | 1.33 MB | 10 月前3
清华大学 普通人如何抓住DeepSeek红利文章/故事/诗歌写作 营销文案 、广告语生成 社交媒体内容(如推文 、帖子) 剧本或对话设计 l 摘要与改写 长文本摘要(论文 、报告) 文本简化(降低复杂度) 多语言翻译与本地化 l 结构化生成 表格 、列表生成(如日程安排 、 菜谱) 代码注释 、文档撰写 文本生成 文本生成 03 02 01 语义分析 • 语义解析 • 情感分析(评论、反馈) • 意图识别(客服对话、用户查 流程图 · 组织架构图 常规绘图 DeepSeek的深度思考过程独树一帜 《香料三重奏》茄椒肠卷配酸奶薄荷酱 ??? 灵感地图:巴尔干半岛香料 × 地中海清新感 × 日式天妇罗手 法 ??? 结构解构: 1.青椒薄片 - 采用日式天妇罗手法炸至半透明,形成琥珀色脆网 2.茄泥慕斯 - 融入保加利亚红椒粉与希腊酸奶,制成空气感慕斯 3.香肠脆粒 - 伊比利亚辣肠低温烘烤后粉碎成黄金脆粒 4.薄荷冷萃油 宽,快速“膨胀”页数。 ü 若有时间,再精雕细琢 场景2:新员工快速熟悉公司情况和行业情况 场景:小李刚刚加入一家制造电子元器件的公司,作为一个新员工,他需要在短时间内熟悉公司的产品线、组织 结构、内部系统以及行业情况。然而,公司的产品手册复杂,部门间的职责不清晰,内部系统操作繁琐,行业信 息量庞大,这些都让小李感到不知所措。他担心自己无法在短时间内快速上手,影响工作效率和表现。 以往的解决方式:0 码力 | 65 页 | 4.47 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一) 从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二) 从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI 从数字空间中的AI,走向能理解和操控物理空间的AI 从解决现实问题的AI,走向解决科学问题的科学型AI 大模型AI 智能体AI 物理AI 科学AI 10政企、创业者必读 面对全球大模型产业之争,要打赢「三大战役」 AGI之战 应用场景之战 大模型安全之战 多模态越来越重要 由文本生成迈向图像、视频、3D内容与世界模拟 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地 能够调用各种工具,具有行动能力 调用企业专业知识,更懂企业 将日常重复性业务流程形成Playbook,实现流程自动化 通过目标拆解,多次调用大模型以及专家模型协同,形成0 码力 | 76 页 | 5.02 MB | 5 月前3
Curve文件系统元数据管理Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:inode和dentry都按照parentid分片 extent,属于一个文件 partition append→ master slave协议 overwrite → raft 更适合大文件顺序写 fastcfs 有元数据服务器 inode和dentry放一个结构体。 inode → hashtable(key是ino,全局) dentry → skip list (key是name,每个目录下一个) 计算出来的 binlog,随时间会越来越大 差 DG inode + offset) etcd 差 块设备,最小10GB segment + chunk raft 块设备的元数据管理 cephfs 3、各内存结构体 时间复杂度 空间复杂度 特点 可用实现 Btree 一个节点上保存多条数据,减少树的层次(4~5层),方便从盘上读取数据,减少去盘上读取次数。适合在盘上和内存组织目录树。 google,https://github0 码力 | 24 页 | 204.67 KB | 6 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。 多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5 垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 在群落范围内,捕食能够影响某一营养等级的动态,也能够影 响整个群落结构的动态。 Within a community, predation can affect thedynamics of a specific trophic level as well as thedynamics of the entire community structure. 对于整个群落来说,捕食对于保持种群结构稳定、食物网进程 及种群内物种数 态,也能够影响整个群落结构的动态。 在群落范围内,捕食能影响某一营养等级及整 个群落结构的动态。 删除了多余的"能够",并将两个 动态合并在一起,使句子更简洁。 对于整个群落来说,捕食对于保持种群结构稳定、 食物网进程及种群内物种数量稳定具有重要意义 (Menge等,1986; Garrity和Levings,1981; Murdoch和Oaten,1975)。 对整个群落而言,捕食对保持种群结构稳定、0 码力 | 85 页 | 8.31 MB | 8 月前3
Python 标准库参考指南 3.7.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4 异常层次结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6 文本处理服务 uu --- 对 uuencode 文件进行编码与解码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 21 结构化标记处理工具 1051 21.1 html --- 超文本标记语言支持 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 继承方法很有用。搜索顺序与getattr() 所使用的相同,只是 type 指定的类型本身会被跳过。 type 的__mro__ 属性列出了getattr() 和super() 所使用的方法解析顺序。该属性是动态的,可以 在继承层级结构更新的时候任意改变。 如 果 省 略 第 二 个 参 数, 则 返 回 的 超 类 对 象 是 未 绑 定 的。 如 果 第 二 个 参 数 为 一 个 对 象, 则 isinstance(obj0 码力 | 1961 页 | 9.14 MB | 9 月前3
DeepSeek从入门到精通(20250204)计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。0 码力 | 103 页 | 5.40 MB | 8 月前3
共 122 条
- 1
- 2
- 3
- 4
- 5
- 6
- 13













