跟我学Shiro - 张开涛也是非常简单;其基本功能点如下图所 示: Authentication:身份认证/登录,验证用户是不是拥有相应的身份; Authorization:授权,即权限验证,验证某个已认证的用户是否拥有某个权限;即判断用 户是否能做事情,常见的如:验证某个用户是否拥有某个角色。或者细粒度的验证某个用 户对某个资源是否具有某个权限; Session Manager:会话管理,即用户登录后就是一次会话,在没有退出之前,它的所有信 又委托给 SecurityManager; 2、 我们需要给 Shiro 的 SecurityManager 注入 Realm,从而让 SecurityManager 能得到合法 的用户及其权限进行判断。 从以上也可以看出,Shiro 不提供维护用户/权限,而是通过 Realm 让开发人员自己注入。 接下来我们来从 Shiro 内部来看下 Shiro 的架构,如下图所示: 实现(shiro-realm.ini) String getName(); //返回一个唯一的 Realm 名字 boolean supports(AuthenticationToken token); //判断此 Realm 是否支持此 Token AuthenticationInfo getAuthenticationInfo(AuthenticationToken token) throws0 码力 | 219 页 | 4.16 MB | 10 月前3
廖雪峰JavaScript教程录 致谢 JavaScript教程 1 JavaScript简介 2 快速入门 2.1 基本语法 2.2 数据类型和变量 2.3 字符串 2.4 数组 2.5 对象 2.6 条件判断 2.7 循环 2.8 Map和Set 2.9 iterable 3 函数 3.1 函数定义和调用 3.2 变量作用域 3.3 方法 3.4 高阶函数 3.4.1 map/reduce 下面的一行代码包含两个语句,每个语句用 ; 表示语句结束: 1. var x = 1; var y = 2; // 不建议一行写多个语句! 语句块是一组语句的集合,例如,下面的代码先做了一个判断,如果判断成立,将执行 {…} 中的所有 语句: 1. if (2 > 1) { 2. x = 1; 3. y = 2; 4. z = 3; 5. } 注意花括号 false 变成 true : 1. ! true; // 结果为false 2. ! false; // 结果为true 3. ! (2 > 5); // 结果为true 布尔值经常用在条件判断中,比如: 1. var age = 15; 2. if (age >= 18) { 3. alert('adult'); 4. } else { 5. alert('teenager');0 码力 | 264 页 | 2.81 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Kotlin 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: fun algorithm(n: Int) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 382 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 C# 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: void Algorithm(int n) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Swift 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: func algorithm(n: Int) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Dart 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: void algorithm(int n) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.2.0 简体中文 JavaScript 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: function algorithm(n) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 379 页 | 18.47 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Ruby 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: def algorithm(n) a 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 372 页 | 18.44 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Go 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: func algorithm(n int) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 384 页 | 18.49 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Rust 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: fn algorithm(n: i32) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 387 页 | 18.51 MB | 10 月前3
共 67 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7













