开课吧基于混合云的Kubernetes平台落地实践-程亮0 码力 | 22 页 | 7.42 MB | 9 月前3
27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 高级能力-混合云(资源角度) 控制力 服务、位置、规则可控 高安全 安全自主可控 高性能 硬件加速、配置优化 固定工作负载 私有云 混合云 SLB 工作负载可迁移 敏捷 标准化、自动化、快速响 应 低成本 按需伸缩、按需使用付费 弹性 可弹性无限拓展 弹性工作负载 公有云 ETCD ETCD Image Image Data X • 企业可以在业务高峰时使用混合云补充 算力,并在低谷时从公有云撤回算力, 云的最大顾虑 • 在云原生产生之前,混合云架构就存在 了,云原生的混合云,除了具备传统混 合云的属性和特性,也同时具备了支撑 现在应用程序更好在不同云形态部署、 运行的能力。 • 云之间同步服务元数据为相同的服务治 理提供基础,同步镜像,为同一服务拓 展算力提供基础,同步Data,为隔离底 层云分布,在业务上的一致性上提供基 础。 • SLB会根据算力资源需要进行切流。 • 混合云本质是一种资源运用形式,资源0 码力 | 20 页 | 5.17 MB | 6 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 5支持联网查询网址,Claude 3.5 sonnet暂不支持; 四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表; 在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码中罗列URL不全、输出文本中提取数据为空等。0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204)DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务0 码力 | 103 页 | 5.40 MB | 8 月前3
2024 中国开源开发者报告观 点 编委会 21 | 2024 年中国开源模型:崛起与变革 26 | 开源模型未必更先进,但会更长久 30 | 大模型撞上“算力墙”,超级应用的探寻之路 36 | AI 的三岔路口:专业模型和个人模型 40 | 2024 年 AI 编程技术与工具发展综述 45 | RAG 的 2024:随需而变,从狂热到理性 51 | 大模型训练中的开源数据和算法:机遇及挑战 57 | 2024 开发者中间件工具生态 2024 年总结 66 | AI Agent 逐渐成为 AI 应用的核心架构 68 | 谈开源大模型的技术主权问题 72 | 2024:大模型背景下知识图谱的理性回归 77 | 人工智能与处理器芯片架构 89 | 大模型生成代码的安全与质量 93 | 2024 年 AI 大模型如何影响基础软件行业中 的「开发工具与环境」 98 | 推理中心化:构建未来 AI 基础设施的关键 Part 高瞻,Gitee AI 运营 设计:张琪 开发者是开源生态的重要支柱。 本章结合 、 的数据分 析,勾勒 2024 年中国开源开发者的整体画像趋势轮廓,主要 反映中国开源开发者使用开源大模型概况、开源项目/组织健康 度,以及中国开源社区的生态评估等情况。 Gitee 数据篇 本报告数据来源:2024年1月至2024年12月 Gitee及Gitee AI平台相关公开数据 4 / 1110 码力 | 111 页 | 11.44 MB | 8 月前3
人工智能安全治理框架 1.02 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6.4 社会公众安全应用指引 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践, 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架0 码力 | 20 页 | 3.79 MB | 1 月前3
蚂蚁金服网络代理演进之路蚂蚁金服网络代理演进之路 肖涵(涵畅) 蚂蚁金服高级技术专家 2019.10.26 Service Mesh Meetup #7 成都站网络代理是什么? 南北流量 东西流量 Server App 负载均衡器 NAT网关 防火墙 负载均衡器 NAT网关 防火墙 负载均衡器 负载均衡器 路由器 路由器 Internet网络代理有什么? Maglev Ipvs Katran 短连接 § 统一协议:MTLS+MMTP § 统一调度:MobileDC 最优调度 网络探测 连接建立 传输+保持 通道复用 复合建连 握手优化 短连补偿 智能心跳 数据压缩 质量模型 自动重试 云端补偿 柔性建连 假连淘汰 动态超时 § 终端策略覆盖移动网络难点 § 优化对业务透明 § ROI考虑 好网更快 弱网更好 协议优化 支付宝网络接入层架构示意 § Service 业务逻辑 轻量级SDK 协议编解码 Sidecar (MOSN) 服务发现 负载均衡 熔断限流 服务路由 …… 将SDK客户端 的功能剥离 Sidecar专注服务间通讯 混合在一个进程内, 应用既有业务逻辑, 也有各种功能 业务进程专注于业务逻辑Service Mesh 为什么蚂蚁需要Service Mesh • 拥抱微服务,云原生 • 异构语言体系融合 • 统一服务治理0 码力 | 46 页 | 19.93 MB | 6 月前3
TiDB v8.5 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 573 5.3.8 混合部署拓扑· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1294 10.2.5 乐观事务模型下写写冲突问题排查· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1297 10 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1817 12.5.8 三节点混合部署的最佳实践· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5095 页 | 104.54 MB | 10 月前3
TiDB v8.4 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 569 5.3.8 混合部署拓扑· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1039 10.2.5 乐观事务模型下写写冲突问题排查· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1043 10 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1559 12.5.8 三节点混合部署的最佳实践· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5072 页 | 104.05 MB | 10 月前3
共 115 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12













