27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 的技术,如 RPA、BPM、 微流逻辑等串联在一起, 实现端到端的智能自动 化。是种生态型平台。 高级能力-混合云(资源角度) 控制力 服务、位置、规则可控 高安全 安全自主可控 高性能 硬件加速、配置优化 固定工作负载 私有云 混合云 SLB 工作负载可迁移 敏捷 标准化、自动化、快速响 应 低成本 按需伸缩、按需使用付费 弹性 可弹性无限拓展 弹性工作负载 公有云 ETCD ETCD 但是通过监控、日志分析、跟踪链等发 现问题根因所在周期长,依靠人的经验 (并且人的经验无法数据化沉淀),而 得到问题根因后,只能通过人工去修复 或者管理 • 而大数据或者基于监督的AI技术的成熟、 运维领域模型趋于完整、云原生底座也 更成熟的基础上,利用大数据分析根因 (关联性分析)和利用AI进行基于根因分 析的自动化处理成为可能。 • 在精细化的基础上,完整较为成熟的自 动化能力,节约了人力成本同时提高了0 码力 | 20 页 | 5.17 MB | 6 月前3
普通人学AI指南Contents 1 AI 大模型基础 4 1.1 AIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 AGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 大模型 . . . . . . . . . . . . . . . 12 2.5.6 Snack Prompt . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 AI 大模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6.1 AgentGPT . . . . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 步骤 1:安装 Ollama . . . . .0 码力 | 42 页 | 8.39 MB | 8 月前3
Nacos架构&原理
Nacos 配置模型 21 Nacos 内核设计 28 Nacos ⼀致性协议 28 Nacos 自研 Distro 协议 38 Nacos 通信通道 42 Nacos 寻址机制 56 Nacos 服务发现模块 63 Nacos 注册中心的设计原理 63 Nacos 注册中心服务数据模型 80 Nacos 健康检查机制 89 Nacos 配置管理模块 97 配置⼀致性模型 97 281 Eureka 平滑迁移 Nacos 方案 281 Nacos 打通 CMDB 实现就近访问 288 跨注册中心服务同步实践 298 配置管理最佳实践 310 Nacos 限流最佳实践 310 Nacos 无缝支持 confd 配置管理 320 结语 326 结语 326 作者 < 6 作者 李艳林(彦林) 李晓双 孙立(涌月) 柳遵飞(翼严) 廖春涛(春少) 和互联网化所带来的架构扩展性和面对海量用户请求的技术挑战。这里面其中有⼀个关键点是软负 载。因为整个分布式架构需要有⼀个软负载来协作各个节点之间的服务在线离线状态、数据⼀致性、 以及动态配置数据的推送。这里面最简单的需求就是将⼀个配置准时的推送到不同的节点。即便如 此简单需求,随着业务规模变大也会变的非常复杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种0 码力 | 326 页 | 12.83 MB | 9 月前3
Deepseek R1 本地部署完全手册是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署32B及以上模型,硬件成本极⾼且运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows Windows 配置要求 Mac 配置要求 适⽤场景 1.5B - RAM: 4GB - GPU: 集成显卡/现代CPU - 存储: 5GB - 内存: 8GB (M1/M2/M3) - 存储: 5GB 简单⽂本⽣成、基础代 码补全 7B - RAM: 8-10GB - GPU: GTX 1680(4-bit量 化) - 存储: 8GB - 内存: 16GB(M2 Pro/M3) 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP8 ≥890GB 2*XE9680(16*H20 GPU) DeepSeek-R1-Distill-0 码力 | 7 页 | 932.77 KB | 8 月前3
TiDB v8.5 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 508 5 部署标准集群 524 5.1 TiDB 软件和硬件环境建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 524 · · · · · · · · · · 524 5.1.2 软件配置要求· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 526 5.1.3 服务器建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 529 5 5.2 TiDB 环境与系统配置检查· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5095 页 | 104.54 MB | 10 月前3
TiDB v8.4 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 504 5 部署标准集群 520 5.1 TiDB 软件和硬件环境建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 520 · · · · · · · · · · 520 5.1.2 软件配置要求· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 522 5.1.3 服务器建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 526 5 5.2 TiDB 环境与系统配置检查· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 5072 页 | 104.05 MB | 10 月前3
TiDB v8.2 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 437 5 部署标准集群 453 5.1 TiDB 软件和硬件环境建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 453 · · · · · · · · · · 453 5.1.2 软件配置要求· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 455 5.1.3 服务器建议配置 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 458 5 5.2 TiDB 环境与系统配置检查· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·0 码力 | 4987 页 | 102.91 MB | 10 月前3
TiDB中文技术文档用户账户管理 使用加密连接 SQL 优化 理解 TiDB 执行计划 统计信息 语言结构 字面值 数据库、表、索引、列和别名 关键字和保留字 用户变量 表达式语法 注释语法 字符集和时区 字符集支持 字符集配置 时区 数据类型 日期和时间类型 基本数据类型 函数和操作符 函数和操作符概述 表达式求值的类型转换 操作符 控制流程函数 - 2 - 本文档使用 书栈(BookStack.CN) 构建 字符串函数 运维文档 软硬件环境需求 部署集群 Ansible 部署方案(强烈推荐) 离线 Ansible 部署方案 Docker 部署方案 Docker Compose 部署方案 跨机房部署方案 配置集群 参数解释 TiDB 配置项解释 开启 TLS 验证 生成自签名证书 监控集群 整体监控框架概述 重要监控指标详解 组件状态 API & 监控 扩容缩容 集群扩容缩容方案 使用 Ansible 扩容缩容 升级 升级组件版本 用户账户管理 使用加密连接 SQL 优化 理解 TiDB 执行计划 统计信息 语言结构 字面值 数据库、表、索引、列和别名 关键字和保留字 用户变量 表达式语法 注释语法 字符集和时区 字符集支持 字符集配置 时区 数据类型 数值类型 日期和时间类型 字符串类型 JSON 数据类型 TiDB 中文技术文档 目录 README - 7 - 本文档使用 书栈(BookStack.CN) 构建 枚举类型 集合类型0 码力 | 444 页 | 4.89 MB | 6 月前3
2024 中国开源开发者报告观 点 编委会 21 | 2024 年中国开源模型:崛起与变革 26 | 开源模型未必更先进,但会更长久 30 | 大模型撞上“算力墙”,超级应用的探寻之路 36 | AI 的三岔路口:专业模型和个人模型 40 | 2024 年 AI 编程技术与工具发展综述 45 | RAG 的 2024:随需而变,从狂热到理性 51 | 大模型训练中的开源数据和算法:机遇及挑战 57 | 2024 开发者中间件工具生态 2024 年总结 66 | AI Agent 逐渐成为 AI 应用的核心架构 68 | 谈开源大模型的技术主权问题 72 | 2024:大模型背景下知识图谱的理性回归 77 | 人工智能与处理器芯片架构 89 | 大模型生成代码的安全与质量 93 | 2024 年 AI 大模型如何影响基础软件行业中 的「开发工具与环境」 98 | 推理中心化:构建未来 AI 基础设施的关键 Part 高瞻,Gitee AI 运营 设计:张琪 开发者是开源生态的重要支柱。 本章结合 、 的数据分 析,勾勒 2024 年中国开源开发者的整体画像趋势轮廓,主要 反映中国开源开发者使用开源大模型概况、开源项目/组织健康 度,以及中国开源社区的生态评估等情况。 Gitee 数据篇 本报告数据来源:2024年1月至2024年12月 Gitee及Gitee AI平台相关公开数据 4 / 1110 码力 | 111 页 | 11.44 MB | 8 月前3
13 Istio 流量管理原理与协议扩展 赵化冰流量管理模型 Gateway Virtual Service Destination Rule 外部请求 内部客户端 Service2 Service1 网格内部 定义网格入口 • 服务端口 • Host • TLS 配置 • 路由配置 • 根据 Host 路由 • 根据 Header • 根据 URI 路由 目的地流量策略配置 • LB 策略 • 连接池配置 • 断路器配置 • TLS 配置 Gateway 对外请求 对外请求(Passthrough/ServiceEntry) 缺省路由 (服务名) 5 Istio 流量管理 – 数据面 – Envoy配置模型和xDS协议 ADS Server LDS RDS CDS EDS Envoy 配置模型的主要概念: • Downstream:连接到 Envoy 的下游 Host,发送请求并接收响应。 • Upstream: 上游 Host 接收来自 Envoy 。 gRPC/REST: update config on the fly 6 Istio 流量管理 – 数据面 – Istio 中的 Envoy Sidecar 配置 Istio中的 Envoy Sidecar 配置: • Istio 通过 Listener、Route Config 和 Cluster 为 Mesh 中的 Envoy 生成了入向和出向两个不同方向的处理流程的配 置。 •0 码力 | 20 页 | 11.31 MB | 6 月前3
共 159 条
- 1
- 2
- 3
- 4
- 5
- 6
- 16













