24-云原生中间件之道-高磊腾讯安全战略研究部联合腾讯安全联合实验室近日共同发布《产业互联网安全十大趋势(2021)》(下简称《趋势》),基于2020年的产业实践和行业风向, 从政策法规、安全技术、安全理念、安全生态、安全思维等维度为产业互联网的安全建设提供前瞻性的参考和指引,助力夯实产业互联网的安全底座。 《趋势》认为,2021年将进一步完善个人信息保护体系,企业对个人信息利用规范化,数字安全合规管理将成为企业的必备能力。与此同时,企业还 原生化需求(从应用角 度) 我们从云原生数据库那里基本可以嗅出云原生对四大件的诉求性质了,所以这里我直接给出对云原生存储的要求 1. 敏捷化需求 • 云原生应用场景对服务的敏捷度、灵活性要求非常高,很多场景期望容器的快速启动、灵活的调度,这样即需要存储卷也能敏捷的根据 Pod 的变化而调整。 需求表现在: • 云盘挂载、卸载效率提高:可以灵活的将块设备在不同节点进行快速的挂载切换;0 码力 | 22 页 | 4.39 MB | 6 月前3
2024 中国开源开发者报告人类语言就是一种高度抽象、跨模态、表达力充分的符号系统,同时它作为知识的载体,自 然地存在大量数据可用于训练,还蕴含了人类的思维模式。 在此基础上训练得到的 LLM,自然具备被诱导出类人思考的潜力。在 COT(思维链)【4】、 TOT(思维树)【5】等技术的加持下,大模型正在学习拆解自己的“思维”,OpenAI 的 o1 就是 典型案例,强化了推理能力的同时,也大大缓解了幻觉问题。 2. 大模型做不到的,“现存工具”强势补位。 化测量、监控和调 试他们的 AI 应用系统。 展望未来,o1 模型的发布标志着大模型研究进入了新的时代。o1 模型的推理能力提升对 AI 基础设施提出了更高的要求,例如并行计算部分思维链路、减少不必要的思维过程等。研究 的重点重新回到了算法层面,而非简单的算力堆砌,这对于中小型模型开发公司和学术界而言是 一大利好。o1 模型的更强推理能力推动了越来越多真正的 autopilot 类产品进入⽇常生活,预 July 2006. 包云岗 包云岗博士,研究员,现任中国科学院计算技术研究所副所 长,中国科学院大学计算机学院副院长,中国开放指令生态 (RISC-V)联盟秘书长。主要研究领域为开源芯片与敏捷设 计、数据中心体系结构等,带领团队在国内率先开展了一系列 开源芯片实践。 88 / 111 大模型生成代码的安全与质量 文/谢筱恒 随着人工智能技术的快速发展,基于大型预训练模型的代码生成工具,如0 码力 | 111 页 | 11.44 MB | 8 月前3
27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊为了进一步加速业务APP交付速度,而专业业务人员并不熟悉IT领域知识,但是低代码可以使得非IT人员快速构建业务系统成为可能,低代码平台是业 务研发和运行一体的平台,其内部实现并不容易,想落地更不容易,关键在于人们现在存在巨大的误区!工具思维导致落地艰难! 业务沟通、需求分析与设计的交流平台 低代码平台表达的是业务逻辑。低代码平台的作用是将业务需求中的逻辑关系理清楚,帮助企业实现这个逻辑。 好的低代码平台要能适应企业的需求变化,提供需求变更管理 实现端到端的智能自动 化。是种生态型平台。 高级能力-混合云(资源角度) 控制力 服务、位置、规则可控 高安全 安全自主可控 高性能 硬件加速、配置优化 固定工作负载 私有云 混合云 SLB 工作负载可迁移 敏捷 标准化、自动化、快速响 应 低成本 按需伸缩、按需使用付费 弹性 可弹性无限拓展 弹性工作负载 公有云 ETCD ETCD Image Image Data X • 企业可以在业务高峰时使用混合云补充0 码力 | 20 页 | 5.17 MB | 6 月前3
人工智能安全治理框架 1.0应用采取 包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的 风险及时采取措施。 人工智能安全治理框架 (V1.0)- 2 - 人工智能安全治理框架 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 人工智能安全治理框架 图像、音频、视频等,宣扬恐怖主义、极端主义、有组织犯罪等内容,干涉他 国内政、社会制度及社会秩序,危害他国主权;通过社交机器人在网络空间抢 占话语权和议程设置权,左右公众价值观和思维认知。 3.2.4 伦理域安全风险 (a)加剧社会歧视偏见、扩大智能鸿沟的风险。利用人工智能收集分析 人类行为、社会地位、经济状态、个体性格等,对不同人群进行标识分类、区 别对待,带来系统性0 码力 | 20 页 | 3.79 MB | 1 月前3
22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊BAM、BI 4、协作平台 OA、CRM 5、数据化运营 SEM、O2O 6、互联网平台 AI、IoT 数据化运营 大数据 智能化管控 互联网平台 跨企业合作 稳态IT:安全、稳定、性能 敏态IT:敏捷、弹性、灵活 各行业IT应用系统不断丰富与创新 总部 机关 内部员工 分支 机构 内部员工 移动 接入 内部员工/合作伙伴 OA CRM HRM …… BPM MES 稳态IT WEB Docker: 抽象云资源,使 得更容易使用 微服务: 加快业务迭代更新 从支持应用不同维度发展,最终走在了一起 2010年WSO2提出 类云原生的概念 云原生应用相比传统应用的优势 低成本 高敏捷 高弹性 云原生应用 传统应用 部署可预测性 可预测性 不可预测 抽象性 操作系统抽象 依赖操作系统 弹性能力 弹性调度 资源冗余多 缺乏扩展能力 开发运维模式 DevOps 瀑布式开发 部门孤立 服务架构 QPS超过2019 年双11的230%,研发效率交付提效超过 30%,弹性资源成本减少 40% 以上。 总体趋势分析 在多种新旧应用承 载诉求推动下,催 熟云计算架构的全 栈化和软硬一体化 带来更敏捷的体验 容器多样化 应用规模的剧增,成 本诉求越来越成为主 体,基于AI的自动化 将精益化资源管理, 带来更好的成本控制 高度自动化 应用上云,安全问题 凸现,在云原生新架 构下,需要打造端到 端的容器安全网0 码力 | 42 页 | 11.17 MB | 6 月前3
DeepSeek从入门到精通(20250204)概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利在AI时代,知识的获取成本趋近于零,拥有知识不再是核心竞争力。利用提示词创造知识,引领创新、明确 方向,成为社会与个人竞争力的关键。 p 选择中的再创造 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 性再生。 p 智慧赋能的决策力 提出问题与甄别答案的能力,使人类在信息爆炸与AI辅助的时代,通过决策行为实现价值创造,成为社会发 展的持续动力。 自然语言理解与分析 文本分类 • 文本分类 • 主题标签生成(如新闻分 类) • 垃圾内容检测 Mermaid图表 · 流程图 · 时序图 · 类图 · 状态图 · 实体关系图 · 思维导图 React图表 · 折线图 · 柱状图 · 饼图 · 散点图 · 雷达图 · 组合图表 SVG矢量图 · 基础图形 · 图标 · 简单插图 · 流程图 · 组织架构图 更强调了认知能力 、创新思维和软实 力的重 要性 。 l 这些核心技能构成了提示语设计的基础, 涵盖了从 问 题分析到创意生成, 再到结果优化的全过程 。 l 语境理解能力使设计者能够在复杂的社会和文化背 景 下工作; 抽象化能力有助于提高工作效率和拓 展应用 范围; 批判性思考是确保AI应用可靠性和 公平性的关 键; 创新思维能力推动了AI应用的边 界拓展,0 码力 | 65 页 | 4.47 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502高质量发展注入强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一) 从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」 大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专 除了少数科技巨头,大多数公司都专注于做专业大模型 MoE架构盛行,本质是多个专家模型组成一个大模型 慢 人类真正智力表现 的形式 直觉经验型 速度快、准确性低 GPT、DeepSeek-V3擅长的 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答 长思维链强大的推理能力是真正人类智力的体现 预训练大模型是人记忆和学习的能力,推理模型是对复杂问题 进行规划、分解、预测的能力,实现了真正的慢思考 28 例:课后作业 仔细思考政企、创业者必读0 码力 | 76 页 | 5.02 MB | 5 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单响应速度快,高效输出数据分析 结果,分析各因素对关键指标生 存率的影响,语言表达自然,重 点突出结合历史背景对数据规律 进行验证,但没有察觉数据异常。 DeepSeek R1 详细展示长思维链,精准提取关键指 标“幸存率”,分析多个因素特征对 幸存率的影响,结合历史背景对数据 及规律进行验证,并敏锐察觉数据异 常,提出了异常处理建议。 1、读取titanic遇难者名单excel 且格式较为简化,不符合学术 引用的标准,在学术规范方面 存在一定不足 提供自动生成参考文献的功能, 在中文文献的引用格式上比较 标准,能够确保格式的规范化 Co-STORM通过多智能体协作 对话生成动态思维导图,帮助 用户发现信息盲点并组织内容, 进一步提升了综述的完整性和 全面性 综上所述,在生成综述的准确性、逻辑性、完整性及可读性方面, 元知AI综述工具依托于真实的学术数据库,具备较 力, 使其在数学、编程和自然语言推理等任务上表现出色。 传统依赖: 大规模监督微调(SFT) 创新思路: 强化学习(RL)驱动 推理效率 • 长思维链支持:DeepSeek R1 支持长链推理,能够生成数万字的 思维链,显著提高复杂任务的推理准确性,其长链推理能力在数学、 编程和自然语言推理等任务中表现出色。 • 多模态任务处理:DeepSeek R1 在多模态任务中表现出色,能够0 码力 | 85 页 | 8.31 MB | 8 月前3
共 40 条
- 1
- 2
- 3
- 4













