TiDB中文技术文档性能测试报告 - v2.0 TiDB Sysbench 性能对比测试报告 - v2.0.0 对比 v1.0.0 - 5 - 本文档使用 书栈(BookStack.CN) 构建 致谢 当前文档 《TiDB 中文技术文档》 由 进击的皇虫 使用 书栈(BookStack.CN) 进行构建,生成于 2018- 06-25。 书栈(BookStack.CN) 仅提供文档编写、整理、归类等功能,以及对文档内容的生成和导出工具。 数据库、表、索引、列和别名 关键字和保留字 用户变量 表达式语法 注释语法 字符集和时区 字符集支持 字符集配置 时区 数据类型 数值类型 日期和时间类型 字符串类型 JSON 数据类型 TiDB 中文技术文档 目录 README - 7 - 本文档使用 书栈(BookStack.CN) 构建 枚举类型 集合类型 数据类型默认值 函数和操作符 函数和操作符概述 表达式求值的类型转换 操作符 控制流程函数 Ping++ 乐视云 零氪科技 威锐达测控 盖娅互娱 游族网络 西山居 FUNYOURS JAPAN 万达网络 佐助金融 360金融 中国电信翼支付 某电信运营商 更多资源 常用工具 PingCAP 团队技术博客 知乎专栏 Weekly 英文文档 README - 10 - 本文档使用 书栈(BookStack.CN) 构建 TiDB 是 PingCAP 公司受 Google Spanner / F10 码力 | 444 页 | 4.89 MB | 6 月前3
NJSD eBPF 技术文档 - 0924版本0 码力 | 20 页 | 7.40 MB | 6 月前3
人工智能安全治理框架 1.0全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 ……………………………………………… ……………………………………………… 7 4.1 针对人工智能内生安全风险 ………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 体安全责任,打造全过程全要素治理链条,培育安全、可靠、公平、透明的人 工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国 家主权、安全和发展利益,保障公民、法人和其他组织的合法权益,确保人工 智能技术造福于人类。 1.1 包容审慎、确保安全。鼓励发展创新,对人工智能研发及应用采取 包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的 风险及时采取措施。 人工智能安全治理框架 (V1.0)-0 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek从入门到精通(20250204)实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”)0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”)0 码力 | 103 页 | 5.40 MB | 8 月前3
金卫-Apache APISIX 借助 Service Mesh 实现统一技术栈的全流量管理Apache APISIX借助ServiceMesh 实现统一技术栈的全流量管理 金卫(API7 解决方案架构师) • 支流科技 - 解决方案架构师 • Apache APISIX PMC • Apache APISIX Ingress Controller Founder • Apache skywalking committer • Github: https://github.com/gxthrj Ingress处理南北向入口流量 APISIX Service Mesh处理东西向流量 APISIX专用插件配置等通过Amesh 下发 APISIX 全流量代理的价值 节约成本 统一技术栈 统一管理 复用技术经验 未来 结合APISIX xRPC实现 原生异构多协议支持 覆盖Istio各类场景/配置 降低用户迁移成本 Apache APISIX Ingress 0 码力 | 34 页 | 3.50 MB | 6 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单情感分析,对数据进行深入解读,帮助市场调 研等领域理解消费者情感,优化产品和策略。 • 故事化数据呈现:借助o3mini将数据以 故事的形式呈现,增强数据的可读性和吸引力, 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 • 多源数据融合分析:在智能交通和城市 量文献中提取核心信息,通过自然语言处理算法,实现从文献梳理到观点提取到研究评论的一键式全自动生成。 产品 概况 功能亮点 功能亮点 多版本与模块化支持:目前提供三个版本(基础版、增 强版、专业版),能够灵活应对不同用户的综述需求。 工具内包括文献观点梳理、问题提出等功能模块,确保 用户在不同科研需求下得到充分支持。 增强版绘图功能:增强版具备绘图功能,可通过可视化 图示(如文献关键词共现图)直观展示综述内容,帮助 容,帮助 用户更好理解和呈现研究成果。 无数据检索:以现有真实数据库作为支撑,通过关键词 检索,自动搜集相关文献并生成综述报告,目前只支持 英文检索。 低重复率:结合现有查重机制与AI技术,在内容生成阶 段引入重复检测与优化策略,从源头上降低重复率风险, 所生成的综述普通重复率与AIGC重复率均在5%以下。 无限双语数据导入:支持中文与英文文献的导入,并且 文献数据量没有限制,能够轻松处理中文文献的系统性0 码力 | 85 页 | 8.31 MB | 8 月前3
05-MoonBit 编程语言(WASM 技术)服务端应用展望以及对Kubernetes生态的影响编程语言(WASM 技术) 服务端应用展望 以及对Kubernetes生态的影响 沙渺(MoonBit 语言社区开发者) 本分享包含大量目前尚处在早期开发阶段甚至概念阶段, 尚未获得广泛应用的技术。 仅为前景展望,不推荐用于当前立项开发的实际工程。 敬请注意 内容 • WASM 技术栈现状和 WASM 后端应用的构想 • MoonBit 语言介绍 • MoonBit 方案对 WASM 技术栈的作用 调用和外部回调) • 直接对接 WASM 扩展(例:wasm-gc target) • 直接对接 WASI 系统接口标准 MoonBit 作为 WASM 原生语言的作用 新语言对 WASM 后端技术栈的意义 • 封装,或者说“过顶”开发思路(OTT,over the top) • 有限使用 WASM 特性,基本只当作 ISA(指令集) • 绕过 WASM 低级概念,转而使用语言的高级概念0 码力 | 30 页 | 3.41 MB | 9 月前3
腾讯云 Kubernetes 高性能网络技术揭秘——使用 eBPF 增强 IPVS 优化 K8s 网络性能-范建明为什么纯粹的eBPF方法不行 • 不够成熟 eBPF 简介 • 编写eBPF程序 • 编译成eBPF中间代码 • 注入内核 • 挂载到network traffic control • 报文激发eBPF代码 技术创新点一 • IPVS 对conntrack的功能依赖 • Iptables SNAT • 具体如何绕过conntrack? • 进报文 • 将处理请求的钩子从nf local-in 前移到nf NF postrouting -> ip_finish_output • 修改成: • 对kenel 做了hack,直接访问ip_finish_output IPVS 绕过conntrack 技术创新点二 • 在linux traffic control上挂一段eBPF 代码,在网卡出报文之前做SNAT • 尽量将大部分代码放在eBPF中,方便升级和维护。 • eBPF loader 创建eBPF centos • 独立开源 • 内核修改在github.com/Tencent/TencentOS-kernel/ THANK YOU 感谢聆听 Jianmingfan 腾讯云 了解更多云原生技术和动态,请关注腾讯云原生公众号0 码力 | 27 页 | 1.19 MB | 9 月前3
TiDB v8.4 中文手册Processing)、OLAP (Online Analytical Processing)、HTAP 解决方案。TiDB 适合高可 用、强一致要求较高、数据规模较大等各种应用场景。 关于 TiDB 的关键技术创新,请观看以下视频。 2.1.1 五大核心特性 • 一键水平扩缩容 得益于 TiDB 存储计算分离的架构的设计,可按需对计算、存储分别进行在线扩容或者缩容,扩容或者 缩容过程中对应用运维人员透明。 应用于数据中枢场景时,TiDB 作为数据中枢可以无缝连接数据业务层和数据仓库层,满足不 同业务的需求。 如果想了解更多关于 TiDB HTAP 场景信息,请参阅 PingCAP 官网中关于 HTAP 的博客。 当遇到以下技术场景时,建议使用 TiDB HTAP 提升 TiDB 数据库整体表现: 96 • 提升分析性能 你的业务中存在某些复杂的分析查询,如聚合、关联等操作。当这些分析查询涉及大量数据(超过 1000 OLTP 业务 性能,确保系统的整体稳定性。 • 简化 ETL 技术栈 当需要加工的数据量为中等规模(100 TB 以内)、数据加工调度流程相对简单、并发度不高(10 以内) 时,你可能希望简化技术栈,替换原本需要使用多个不同技术栈的 OLTP、ETL 和 OLAP 系统,使用一个数 据库同时满足交易系统以及分析系统的需求,降低技术门槛和运维人员需求。 • 强一致性分析 如果需要对业务数据进0 码力 | 5072 页 | 104.05 MB | 10 月前3
共 125 条
- 1
- 2
- 3
- 4
- 5
- 6
- 13













