DeepSeek图解10页PDF馈神经网络(FFN):非线性变换模块,提升模型的表达能力。4. 位置编码 (Positional Encoding):在没有循环结构的情况下,帮助模型理解单词的顺 序信息。 Transformer 结构的优势 1. 高效的并行计算:摒弃循环结构,使计算速度大幅提升。 2. 更好的上下文理解:注意力机制可捕捉长文本中的远程依赖关系。 3. 良好的可扩展性:可适配更大规模模型训练,增强 AI 泛化能力。 教程作者:郭震,工作0 码力 | 11 页 | 2.64 MB | 8 月前3
Hello 算法 1.2.0 简体中文 C# 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Dart 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Kotlin 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 382 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 JavaScript 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 379 页 | 18.47 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Swift 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Ruby 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 372 页 | 18.44 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Go 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 384 页 | 18.49 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Rust 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 387 页 | 18.51 MB | 10 月前3
Hello 算法 1.2.0 简体中文 Java 版那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个 子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高? 这个问题可以从操作数量和并行计算两方面来讨论。 1. 操作数量优化 以“冒泡排序”为例,其处理一个长度为 ? 的数组需要 ?(?2) 时间。假设我们按照图 12‑2 所示的方式,将 数组从中点处分为两个子数组,则划分需要 ?) 。 再思考,如果我们多设置几个划分点,将原数组平均划分为 ? 个子数组呢?这种情况与“桶排序”非常类似, 它非常适合排序海量数据,理论上时间复杂度可以达到 ?(? + ?) 。 2. 并行计算优化 我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的 时间复杂度,还有利于操作系统的并行优化。 并行优化在多核或多处理器的环境中尤其有效,因为 源,从而显著减少总体的运行时间。 比如在图 12‑3 所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散 到各个计算单元,完成后再合并结果。 图 12‑3 桶排序的并行计算 12.1.3 分治常见应用 一方面,分治可以用来解决许多经典算法问题。 ‧ 寻找最近点对:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后找出跨越两部 分的最近点对。 ‧0 码力 | 379 页 | 18.48 MB | 10 月前3
共 19 条
- 1
- 2













