 Hello 算法 1.2.0 简体中文 Kotlin 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 382 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Kotlin 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 382 页 | 18.48 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 Dart 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 378 页 | 18.46 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Dart 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 378 页 | 18.46 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 C# 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 C# 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 Swift 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Swift 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 JavaScript 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.47 MB | 10 月前3 Hello 算法 1.2.0 简体中文 JavaScript 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.47 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 Ruby 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 372 页 | 18.44 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Ruby 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 372 页 | 18.44 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 Java 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Java 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 Python 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 364 页 | 18.43 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Python 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 364 页 | 18.43 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 C++ 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 C++ 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 379 页 | 18.48 MB | 10 月前3
 Hello 算法 1.2.0 简体中文 Rust 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 387 页 | 18.51 MB | 10 月前3 Hello 算法 1.2.0 简体中文 Rust 版2.1 算法效率评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 迭代与递归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 时间复杂度 . . . 综上所述,建议你在深入学习数据结构与算法之前,先对复杂度分析建立初步的了解,以便能够完成简单算 法的复杂度分析。 2.2 迭代与递归 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 系”“四次方 关系”,以此类推。 2.2.2 递归 递归(recursion)是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. 递:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。0 码力 | 387 页 | 18.51 MB | 10 月前3
共 82 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9













