MySQL 兼容性可以做到什么程度PolarDB-X 如 何 做 生 态兼 容 好的 MySQL 兼容性可以做到什么程度 胡中泉(舟济) 阿里云数据库解决方案架构师为什么要兼容 MySQL 01 The longer you look back, the farther you can look forward.也从阿里巴巴的“去IOE”运动说起 业务驱动下的分布式技术实践之路 5月17日,支付宝最后一台小型 机下线标志去IOE落下帷幕 MySQL Binlog 可行性 • 多节点产生多个增量事件队列 • 不同队列中事件之间的顺序 • 分布式事务完整性 • DDL 引起的多 Schema 版本问题 • 扩缩容引起的队列增减 ? Maxwell Debezium A: PolarDB-X 全局 Binlog:完全兼容 • 与 MySQL Binlog 体验完全一致 • 保障分布式事务完整性 • 透明:下游系统或工具改造成本为零 Binlog 完全一致体验 • 文件格式兼容:Binlog v4 row-based • SQL 指令兼容:show binary logs… • MySQL DUMP 协议 • 保证分布式事务完整性与顺序 • 同一连接串 已验证工具或系统 • MySQL Slave(change master) • DTS • Canal/CloudCanal • Maxwell • Debezium0 码力 | 18 页 | 3.02 MB | 6 月前3
25-云原生应用可观测性实践-向阳rights reserved. 云原生应用可观测性实践 向阳 @ 云杉网络 2021-12-08 simplify the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 可观测性 - What & Why 云原生社区可观察性SIG-定义 https://i.cloudnative to/observability/prologue/definition 阿里可观测性数据引擎的技术实践 https://mp.weixin.qq.com/s/0aVgtVCmBmtAgZE_oQkcPw © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 1. 可观测性的成熟度模型 2. 构建内生的可观测性能力 3. 在混合云、边缘云中的实战 Ltd. All rights reserved. 可观测性的成熟度模型 1.0 基础支柱 2.0 ? 3.0 ? simplify the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 1.0 支柱:基础的可观测性要素 Metrics, tracing, and logging0 码力 | 39 页 | 8.44 MB | 6 月前3
Apache SkyWalking 在 Service Mesh 中的可观察性应用Apache SkyWalking 在 Service Mesh 中的可观察性应用 高洪涛 Tetrate 创始工程师Who 高洪涛 美国S ervice Mesh 服务商 Tetrate 创始工程师。原华为软件开发云技术专家,对云原 生产品有丰富的设计,研发与实施经验。对分布式数据库,容器调度,微服务, ServicMesh 等技术有深入的了解。 目前为 Apache ShardingSphere 端点 URL,RPC,函数 Endpoint 观察维度 9/28遇到的挑战 /02 Service Mesh 场景下 SkyWalking 面临的挑战 ( Istio ) 10/28可观测性 11/28Istio 1.5 架构图 12/28挑战1:技术路线多变 基于 Log 成熟、但性能低 Mixer 基于 Metric 高效、但技术门槛高 Mixerless 13/28挑战2:无0 码力 | 29 页 | 1.38 MB | 6 月前3
使用Chaos Mesh来保障云原生系统的健壮性-周强云原生社区Meetup 第三期·杭州站 使用 Chaos Mesh 来保障云原生系统的健壮性 演讲人:周强 GitHub 地址:https://github.com/zhouqiang-cl PingCAP 工程效率负责人,ChaosMesh 负责人 云原生社区Meetup 第三期·杭州站 The incident in the production environment0 码力 | 28 页 | 986.42 KB | 6 月前3
23-云原生观察性、自动化交付和 IaC 等之道-高磊驱动研发、发布 或者实施与自己 APP的集成。 • API作为产品,可 以给订阅、可以 被交易。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-1 知道 知道的 不知道 不知道的 主动性 被动性 监控 可观察 健康检查 告警 指标 日志 追踪 问题和根因 预警 监控&稳定性 分析&追踪&排错&探索 • 从稳定性目标出发,首先需要有提示应用出问题的手段 • 当提示出现问题后,就需要有定位问题位置的手段,进 研发人员,并且提供日志、跟踪、问题根因分析 等工具进一步从微观帮助研发人员定位和解决问 题,这是这里在业务上的价值-稳定性赋能。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-2 可观察性是云原生特别关注的运维支撑能力,因为它的主动性,正符合云原生对碎片变化的稳定性保障的思想 数据的全面采集 数据的关联分析 统一监控视图与展现 Metric 是指在多个连 续的时间周期 内用于度量的 KPI数值 Tracing Tracing 通过TraceId来 标识记录并还 原发生一次分 布式调用的完 整过程和细节 Logging 通过日志记录 执行过程、代 码调试、错误 异常微观信息 数据之间存在很多关联,通过 关联性数据分析可获得故障的 快速界定与定位,辅助人的决 策就会更加精确 根据运维场景和关注点的不同,以不同图表或者曲 线图来表示整体分布式应用的各维度情况,使得开 发人员可以清晰的观测到整体分布式应用的详细运0 码力 | 24 页 | 5.96 MB | 6 月前3
Apache Pulsar,云原生时代的消息平台 - 翟佳
rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ • ⾼性能 + 强⼀致性 • ⽀持统⼀的 Queue 和 Stream 的接⼝。 • 丰富的企业级特性 Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错 ⽆感知容错 零数据catchup streamnative.io Bookie容错 应⽤⽆感知 并发可控 数据恢复 streamnative.io 瞬时存储扩容 应⽤⽆感知 数据均匀分布 ⽆re-balance 数据备份数⽬, 等待刷盘节点数⽬) • openLedger(5, 3, 2) streamnative.io 企业级流存储层: 读写⾼可⽤性(容错) streamnative.io 企业级流存储层: 稳定的 IO 质量 ⾼性能、强⼀致性、读写隔离、灵活SLA • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储:0 码力 | 39 页 | 12.71 MB | 6 月前0.03
Service Mesh 高可用在企业级生产中的实践Spring Cloud 的优缺点 缺点 • 仅适用于 JAVA 应用、Spring Boot 框架 • 侵入性强 • 升级成本高、版本碎片化严重 • 内容多、门槛高 • 治理功能仍然不全5/总页数 优点 • 微服务治理与业务逻辑解耦 • 异构系统的统一治理 • 三大技术优势: • 可观察性 • 流量控制 • 安全 Service Mesh 的优缺点 缺点 • 增加了复杂度 • 整体链路的复杂度 !15/总页数 注册中心 - Consul • 架构设计 • 多地域? • 多租户?16/总页数 通过治理策略保证服务高可用 /0317/总页数 治理策略 & 高可用 描述 N个9 可用性级别 年度停机时间 基本可用 2个9 99% 87.6小时 较高可用 3个9 99.9% 8.8小时 具备故障自动恢复 能力可用 4个9 99.99% 53分钟 极高可用 5个9 99.999% 响应超时19/总页数 治理策略 & 高可用 • 微服务高可用 设计手段 服务高可用 服务限流 方法容错 负载均衡+ 实例容错 柔性化/异步化 服务冗余 服务分流 存储高可用 熔断20/总页数 治理策略 & 高可用 • 微服务高可用设计手段 • 限流 • 熔断 • 负载均衡+实例容错 Spring Cloud Service Mesh Config Server SDK Sidecar21/总页数0 码力 | 38 页 | 1.38 MB | 6 月前3
Curve核心组件之mds – 网易数帆概述整体架构 01 02 03 MDS各组件详细介绍 Q&A基本架构 • 元数据节点 MDS 管理元数据信息 收集集群状态信息,自动调度 • 数据节点 Chunkserver 数据存储 副本一致性 • 客户端 Client 对元数据增删改查 对数据增删改查 • 快照克隆服务器MDS各个组件 MDS是中心节点,负责元数据管理、集群状态收集与调度。MDS包含以下几个部分: • Topology: 副本放置策略。 • Heartbeat: 心跳模块。跟chunkserver进行交互,收集chunkserver上的负载信息、 copyset信息等。 • Scheduler: 调度模块。用于自动容错和负载均衡。TOPOLOGY topology用于管理和组织机器,利用底层机器的放置、网络的规划以面向业务提供如下功能和非功能需求。 1. 故障域的隔离:比如副本的放置分布在不同机器,不同机架,或是不同的交换机下面。 下,心跳的流量将会非常大;而引入CopySet的概念之后,可以以CopySet的粒度进行探活、配置变更,降低 开销。 3. 提高数据可靠性:在数据复制组过度打散的情况下,在发生多个节点同时故障的情况下,数据的可靠性会受 到影响。引入CopySet,可提高分布式存储系统中的数据持久性,降低数据丢失的概率。COPYSET ChunkServer,Copyset和Chunk三者之间的关系如下图: Mds在分0 码力 | 23 页 | 1.74 MB | 6 月前3
Raft在Curve存储中的工程实践raft和braft 03 raft在Curve中的应用 05 Q&A 04 Curve对raft的优化RAFT协议简介 什么是raft • raft 是一种新型易于理解的分布式一致性复制协议,由斯坦福大学的Diego Ongaro和John Ousterhout提出,《In Search of an Understandable Consensus Algorithm(Extended xos变种,提供了更完整更清晰的协议描述,更容易理解和实现。 • raft可以解决分布式理论中的CP,即一致性和分区容忍性 • 大多数副本成功即可返回成功 • 速度取决于写的较快的大多数RAFT协议简介 • Leader:负责从客户端接受日志,把日志复制到其 他服务器,当保证安全性的时候告诉其他服务器应用 日志条目到他们的状态机中。 • Candidate: 发起选举。获取大多数选票的候选人将 然后把执⾏的结果返回给客户端。 • 提供命令在多个节点之间有序复制和执行,当多个节 点初始状态一致的时候,保证节点之间状态一致。 raft日志复制RAFT协议简介 raft配置变更 • 配置:加入一致性算法的服务器集合。 • 集群的配置不可避免会发生变更,比如替换宕机的机器。 直接配置变更可能出现双主问题 • 共同一致(joint consensus) • 集群先切换到一个过渡的配置(old0 码力 | 29 页 | 2.20 MB | 6 月前3
新一代云原生分布式存储各存储设备通过网络互联 大规模 弹性扩容 底层构建在分布式存储之上 云的概念 成本:共用基础设施 弹性:随意扩缩容 速度:更快的构建发布业务 底层构建在分布式存储之上 云原生的概念: 易用性:跨平台,超融合,弹性 小型主机 容量有限分布式存储的分类 按照各种应用场景所需的存储接口分类 对象 存储 文件 存储 块存储 接口为简单的 Get、PUT、DEL 和其他扩展 分布式存储系统需要满足接口需求,并且有持续监控、错误检测、容错与自动恢复的能力 以达到高可靠、高可用、高可扩分布式存储的要素 要 素 拆 解 数据分布 —— 无中心节点/中心节点 均 衡 地址空间的每段数据会分布在不同机器的磁盘上,如 何找到这些数据? 可靠性 & 可用性 —— 多副本/EC 服务不可用时 间 数据一致性 —— 一致性协议 如何保证数据不丢?如何保证各种硬件故障的时候读 60 (8MB, 16MB) 50分布式存储的要素 — 一致性协议 多副本: 写三次? 一致性协议 一致性:WARO(Write-all-read-one)、Quorum WARO • 所有副本写成功 • 读可用性高:可以读任一副本 • 写可用性较低,任一副本异常写失败 Quorum • 大多数副本写成功 • 读写服务可用性做一个折中 • 写性能提升,速度取决于写的较快的大多数0 码力 | 29 页 | 2.46 MB | 6 月前3
共 179 条
- 1
- 2
- 3
- 4
- 5
- 6
- 18













