积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(66)Python(42)云计算&大数据(31)Service Mesh(17)系统运维(13)综合其他(12)存储(12)人工智能(11)前端开发(10)数据库(9)

语言

全部中文(简体)(101)英语(20)中文(繁体)(14)中文(简体)(4)zh(2)

格式

全部PDF文档 PDF(140)TXT文档 TXT(1)
 
本次搜索耗时 0.281 秒,为您找到相关结果约 141 个.
  • 全部
  • 后端开发
  • Python
  • 云计算&大数据
  • Service Mesh
  • 系统运维
  • 综合其他
  • 存储
  • 人工智能
  • 前端开发
  • 数据库
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • zh
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化,
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 24-云原生中间件之道-高磊

    中就可以完成安全扫描,不会像DAST一样导致业 务报警进而干扰测试,同时由于污点跟踪测试模 式,IAST可以像SAST一样精准的发现问题点 SCA(软件成分分析) 有大量的重复组件或者三方库的依赖,导致安全漏洞被传递或者扩散, SCA就是解决此类问题的办法,通过自动化分析组件版本并与漏洞库相 比较,快速发现问题组件,借助积累的供应链资产,可以在快速定位的 同时,推动业务快速修复。 安全左移的一种,在上线前发现依赖组件的安全 前台类目 商品查询 BFF 商品数据库 文件存储 logging MQ 交易数据库 大数据 营销分析 业务赋能 典型微服务应用 云原生应用 下单服务 交易支付 支付网关 锁定库存 库存数据库 前台类目 商品查询 BFF 商品数据库 文件存储 logging MQ 交易数据库 大数据 营销分析 云原生PaaS平台 • 四大件在云原生场景下带来什么客户 价值? • 四大件在云原生场景下技术架构有什 本 等等都需要同时满足(和传统CAP相悖) • 接入层需要能够根据规则的路由,以及兼容各类协议接 口以及数据模型,并能根据应用的规模来自动拓展。 • 实现HTAP(OLTP+OLAP),将在线事务|分析混合计算模型 基础上,实现多模数据模型,使得集成成本经一步降低。 • 计算层,与存储彻底剥离开来,实际是微服务化架构, 可以自由伸缩,并自动故障转移,采用读写分离,适应 高负荷的场景。另外也需要进一步将计算和内存分离出
    0 码力 | 22 页 | 4.39 MB | 6 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务 不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务 不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    Law,改 写AI发展方向 30政企、创业者必读 DeepSeek在用户体验上实现了三件事  更加理解用户需求,降低Prompt要求  直接呈现思维过程,展现像真人一样思考的能力  可实时联网,把搜索能力与推理能力结合 DeepSeek颠覆式创新——用户体验 具备强大推理能力,思维过程更加缜密,智能性提升 用起来更像真人,写作能力更强,想象力更丰富 31政企、创业者必读 DeepSeek-R1用户体验改善的作用 音频生成 A I 数字人 生物制药 新材料研究 脑机接口 基础科学 能源自由 宇宙探索 生命科学 科学 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、 大数据分析、 工作流知识) 专家经验模型( 专业模型训练) 业务流程自动化( A g e n t框架) 组织协同( 工作流) 人机交互 赋能个人和 企业员工 生产力提升 多模态 能力 3 图片理解和处理 导 图 原料 废钢 烧结 球团 焦化 炼铁 炼钢 精炼 连铸 热轧 冷轧 销售 • 料场环境实时监控 • 人员越界安全监测 • 回转窑窑况智能分 析 • 原料无人天车吊装 控制 • 生产现场运输状态 监控 • 现场路线智能调度 • 智能化能源调度 • 料场智能调度 • 燃料水分视觉分析 • 多角度废钢图像 采集 • 废钢智能定级 • 杂质识别 & 扣杂 • 废钢槽编号识别
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 [PingCAP Meetup SH 5.26]TiDB在Ping++金融聚合支付下的实践0526

    TiDB在Ping++的应⽤用场景分析 - OLAP:saas服务下实时数仓的⽀支撑 - HTAP:基于TiDB Docker的聚合⽀支付私有化部署⽅方案 • 关于TiDB的线上运维 - TiDB体系 - 业务零感知运维 Ping++原数据架构及瓶颈 实时数仓数据源挑战: • 数⼗十亿交易易量量 • 多维度联合分析 • 实时分析+报表下载 场景⼀一:实时数仓数据源⽀支撑 场景⼀一:实时数仓数据源⽀支撑 数仓数据源选型过程: • RDS快速上线
 最⼤大承载3个⽉月交易易量量分析 • ADS 偶发性数据延时 • ES 开发成本、复杂关联场景 场景⼀一:实时数仓数据源⽀支撑 选型TiDB的原因: • 兼容Mysql • 分布式,海海量量数据实时查询性能 • ⾃自动failover的⾼高可⽤用 场景⼆二:聚合⽀支付私有化部署⽅方案 服务私有化部署的数据库要求:
    0 码力 | 11 页 | 630.95 KB | 6 月前
    3
  • pdf文档 Nacos架构&原理

    步演化成 3 个产品的,因此我们最终决定将内部三个 产品合并统⼀开源。定位为:⼀个更易于构建云原生应用的动态服务发现、配置管理和服务管理平 台。由于我们在阿里内部发展了 10 年,在易用、规模、实时、稳定沉淀了核心竞争力,围绕阿里 Dubbo 和 Spring-cloud-alibaba 生态进行推广,建立阿里 DNS(Dubbo+Nacos+Spring- cloud-alibaba/S restfulAPI,易用的控制台,丰富的使用文档。 稳定:99.9% 高可用,脱胎于历经阿里巴巴 10 年生产验证的内部产品,支持具有数百万服务的大 规模场景,具备企业级 SLA 的开源产品。 实时:数据变更毫秒级推送生效;1w 级,SLA 承诺 1w 实例上下线 1s,99.9% 推送完成;10w 级,SLA 承诺 1w 实例上下线 3s,99.9% 推送完成;100w 级别,SLA 承诺 次配 置要将全部实例重启,不仅增加了系统的不稳定性,也提高了维护的成本。 那么如何能够做到服务不重启就可以修改配置?所有就产生了四个基础诉求:  需要支持动态修改配置  需要动态变更有多实时  变更快了之后如何管控控制变更风险,如灰度、回滚等  敏感配置如何做安全配置 Nacos 架构 < 22 概念介绍 配置(Configuration) 在系统开发过程中通常会将⼀些
    0 码力 | 326 页 | 12.83 MB | 9 月前
    3
  • pdf文档 Service Mesh的实践分享

    proxy,若仍然超限会再被切走 • 默认单IP限流值是2w qps今年计划(Roadmap) 我是作者名称Roadmap • 智能参数治理 • 实时反馈 • 历史指标 • OSP智能故障分析&告警 • 基于内部的智能根因分析大框架 • 全链路服务综合治理 • 实时上下游超时治理 • 实时上下游限流治理 • 智能路由 • 开源智能参数治理 • 现状 • 依赖用户手工配置参数(超时时间、限流) • 服务实例的差异导致配置相当复杂,容易 应用指标 上报 应用指标 上报 配置建议 配置下发 宿主机 用户 配置治理参数智能故障分析&告警 • 现状 • 告警信息分散,需要人工进行更多的数 据收集和整合才能定位问题,效率低下 • 告警信息偏原始,缺乏对告警信息进行 进一步推导得到具体的措施 • 目标 • 基于内部的智能根因分析大框架,通过 智能中心整合机器内、集群间、调用链 上的指标,对信息进行整合和推导,得 出具备操作性的建议 游还继续往下调)和数据不一致风险(上游以 为写失败了下游却写成功了) • 目标 • 实时上下游超时治理 • 通过传递剩余超时时间,让下游可以判断是否 继续一些重量级操作 • 实时上下游限流治理 • 下游资源异常(DB调用超时、redis超时等)动 态调整上游限流值或直接降级 • 智能路由 • 根据实时数据优化不合理的跨机房调用 Proxy App 服务调用 (带超时时 间) Proxy
    0 码力 | 30 页 | 4.80 MB | 6 月前
    3
  • pdf文档 TiDB v8.2 中文手册

    · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1029 11.1.2 TiDB 性能分析和优化 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1052 11.1.4 TiFlash 性能分析和优化方法 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1073 11.1.5 TiCDC 性能分析和优化方法 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1078 11.1.6 延迟的拆解分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1080
    0 码力 | 4987 页 | 102.91 MB | 10 月前
    3
  • pdf文档 TiDB v8.5 中文手册

    · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1350 11.1.2 TiDB 性能分析和优化 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1373 11.1.4 TiFlash 性能分析和优化方法 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1394 11.1.5 TiCDC 性能分析和优化方法 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1399 11.1.6 延迟的拆解分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1401
    0 码力 | 5095 页 | 104.54 MB | 10 月前
    3
共 141 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 15
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研24原生中间中间件之道高磊入门精通20250204清华华大大学周鸿祎演讲我们带来创业机会360202502PingCAPMeetupSH5.26TiDBPing++金融聚合支付实践0526Nacos架构原理ServiceMesh分享v8中文手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩