积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(47)云计算&大数据(39)Python(22)Service Mesh(21)综合其他(9)前端开发(8)人工智能(8)数据库(7)TiDB(7)Istio(6)

语言

全部中文(简体)(77)英语(21)中文(繁体)(14)中文(简体)(2)日语(1)

格式

全部PDF文档 PDF(114)DOC文档 DOC(1)
 
本次搜索耗时 0.062 秒,为您找到相关结果约 115 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Python
  • Service Mesh
  • 综合其他
  • 前端开发
  • 人工智能
  • 数据库
  • TiDB
  • Istio
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 日语
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • word文档 安全简介

    0 码力 | 2 页 | 304.16 KB | 5 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 针对人工智能内生安全风险 ………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 6.4 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 Service Mesh 在蚂蚁金服生产级安全实践

    Service Mesh 在蚂蚁金服生产级安全实践 彭泽文 蚂蚁金服高级开发工程师 2019.8.11 Service Mesh Meetup #6 广州站基于 Secret Discovery Service Sidecar 的证书管理方案 使用可信身份服务构建敏感数据下发通道 Service Mesh Sidecar 的 TLS 生产级落地实践 分享内容基于 Secret Discovery Volume 形式挂载。 存在以下三个问题:  Secret 管理方式与现有密钥管理系统有冲突,需要密钥管理系统强依赖 Kubernetes  Secret 以明文形式挂载在容器的文件系统中,存在安全隐患  Secret 更新时,Sidecar 需要通过热重启方式重新加载,成本高昂基于 Secret Discovery Service Sidecar 的证书管理方案 Envoy SDS 证书管理流程 进行密钥管理和分发,Sidecar 通过 gRPC 请求获取证书,并利用 gRPC stream 能力实现证书动态轮转。 当然,Sidecar 和 SDS Server 的通信也需要保证自身的通信安全,存在以下两种方案:  Sidecar 与 SDS Server 采用 mTLS 通信,采用静态证书方案,通过 Secret Mount 方式获取通信证书  Sidecar 与 SDS Server
    0 码力 | 19 页 | 808.60 KB | 6 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明: ① 增长趋势与政策关联性; �实战技巧: 执行需求 �实战技巧: "将以下C语言代码转换为Python,要求: ① 保持时间复杂度不变; ② 使用numpy优化数组操作; ③ 输出带时间测试案例的完整代码。" 创造性需求 "设计一款智能家居产品,要求: ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 问题重构能力 将复杂、模糊的人类需求转化为结构化的AI任务 识别问题的核心要素和约束条件 设计清晰、精确的提示语结构 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明: ① 增长趋势与政策关联性; �实战技巧: 执行需求 �实战技巧: "将以下C语言代码转换为Python,要求: ① 保持时间复杂度不变; ② 使用numpy优化数组操作; ③ 输出带时间测试案例的完整代码。" 创造性需求 "设计一款智能家居产品,要求: ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 问题重构能力 将复杂、模糊的人类需求转化为结构化的AI任务 识别问题的核心要素和约束条件 设计清晰、精确的提示语结构 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    第二阶段:20分钟——用AI批量填充模块(目标:6000字) 针对每个小节单独提问,例如: “写一段‘2.1 功能分区’的内容,要求包含自动化立体仓库、AGV调度中心、冷链专区的技术参数,用数据列表形式 呈现。” 关键技巧: p 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3 。你手心冒汗,想举手提问又怕被说“这 么简单还不会”,不提问又担心后面全听不懂…… 场景1:课堂上突然跟不上了,怎么办 1.课堂当下(隐蔽求助) p 适用场景:课堂上随时快速跟进 p 操作技巧: Ø 在笔记软件中快速标注困惑点(如:“疑问:第二 步到第三步如何展开?”) Ø 输入精准问题: “隐函数求导例题:从方程x² + xy + y³ = 0推导 dy/dx,请展示完整的链式法则展开步骤,特别是分母 dy/dx,请展示完整的链式法则展开步骤,特别是分母 3y²的来源。” Ø 秒速获取步骤解析: 立即对照补全笔记,跟上老师进度。 2. 课间5分钟(深度追问) p 适用场景:老师已下课,但10分钟后还有后续课程 p 操作技巧: Ø 追问细节: “为什么对y³求导会得到3y²·dy/dx而不是3y²?” Ø 让AI用类比解释: “请用‘水管流速’比喻说明隐函数求导中dy/dx的意 义。” Ø 生成记忆口诀:
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C# 版

    出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用第 1. 点和第 2. 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: 给定一个函数,我们可以用上述技巧来统计操作数量: void Algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); 第 2 章 复杂度分析 www.hello‑algo.com 32 32 } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } 以下公式展示了使用上述技巧前后的统计结果,两者推算出的时间复杂度都为 ?(?2) 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Dart 版

    出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用第 1. 点和第 2. 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: 给定一个函数,我们可以用上述技巧来统计操作数量: void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { print(0); 第 2 章 复杂度分析 www.hello‑algo.com 32 } // +n*n(技巧 +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { print(0); } } } 以下公式展示了使用上述技巧前后的统计结果,两者推算出的时间复杂度都为 ?(?2) 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7
    0 码力 | 378 页 | 18.46 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Kotlin 版

    出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用第 1. 点和第 2. 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: 给定一个函数,我们可以用上述技巧来统计操作数量: fun algorithm(n: Int) { var a = 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for (i in 0..<5 * n + 1) { println(0) 第 2 章 复杂度分析 www.hello‑algo.com 32 } // +n*n(技巧 3) for for (i in 0..<2 * n) { for (j in 0..技巧前后的统计结果,两者推算出的时间复杂度都为 ?(?2) 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2
    0 码力 | 382 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 JavaScript 版

    出以下计数简化技巧。 1. 忽略 ?(?) 中的常数项。因为它们都与 ? 无关,所以对时间复杂度不产生影响。 2. 省略所有系数。例如,循环 2? 次、5? + 1 次等,都可以简化记为 ? 次,因为 ? 前面的系数对时间复 杂度没有影响。 3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别 套用第 1. 点和第 2. 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: 给定一个函数,我们可以用上述技巧来统计操作数量: function algorithm(n) { let a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (let i = 0; i < 5 * n + 1; i++) { console.log(0); 第 2 章 复杂度分析 www.hello‑algo.com 32 } // +n*n(技巧 3) for (let i = 0; i < 2 * n; i++) { for (let j = 0; j < n + 1; j++) { console.log(0); } } } 以下公式展示了使用上述技巧前后的统计结果,两者推算出的时间复杂度都为 ?(?2) 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||)
    0 码力 | 379 页 | 18.47 MB | 10 月前
    3
共 115 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 12
前往
页
相关搜索词
安全简介人工智能人工智能治理框架1.0ServiceMesh蚂蚁金服生产实践DeepSeek入门精通20250204清华华大大学清华大学普通通人普通人如何抓住红利Hello算法1.2简体中文简体中文C#DartKotlinJavaScript
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩