2024 中国开源开发者报告https://huggingface.co/spaces/ zh-ai-community/zh-model-rel ease-heatmap 21 / 111 其中,Qwen 系列凭借灵活的多尺寸选项,强大的多语言支持以及友好的模型授权功能, 赢得了社区开发者的高度评价。DeepSeek 通过引入多头潜在注意力(Multi-head Latent Attention, MLA)技术,在 中国开源模型的发展不仅体现在技术突破上,还在生态建设中展现出巨大的活力。中国开源 模型从竞争激烈的“百模大战”逐步迈向多元化和深度细分,国内社区在今年发布了大量高质量 开源模型,尤其是多模态理解与生成模型: 多模态理解:Qwen2-VL、Ovis、InternVL2、DeepSeek JanusFlow、GOT-OCR2_0; 图片生成:PixArt、Lumina、Kolors、Hunyuan-DiT、VAR、Meissonic; 础要素并不为权力机构垄断,大多要从市场上获得。 26 / 111 大模型作为一项令人激动的技术,商业化场景覆盖了对企业(2B)与对个人(2C)两个 大方向。 大模型赛道在海外是“一超多强”,在国内则是“多头并举”,两种典型的竞争格 局都全了。 以上,大模型赛道的元素非常丰富,各种商业化方法的排列组合都不缺,为我们的分析与推 演提供了可贵的素材。对软件商业化问题感兴趣的朋友一定要长期关注这个赛道。只有这样的对0 码力 | 111 页 | 11.44 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二) 从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI 从数字空间 Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四 模型越做越小 17 大模型进入「轻量化」时代,上车上终端,蒸馏小模型 先做得更大,然后探索能做多小政企、创业者必读 DeepSeek出现之前的十大预判 之五 知识的质量和密度决定大模型能力 高质量数据、合成数据使模型知识密度的快速增长 大模型能以更少的参数量达到更高的性能 36 国外:GPT-4等效智能在过去18个月内价格下降240倍 国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要 由文本生成迈向图像、视频、3D内容与世界模拟 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地 能够调用各种工具,具有行动能力0 码力 | 76 页 | 5.02 MB | 5 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek 量信息,请从中读取每一天的信息,并整理成一张表格,要求包括以下几项信息:1.当天日期;2.当天的铁路客运量、 比2024年同期多或者少的百分比、环比的百分比。3.当天的公路客运量、比2024年同期多或者少的百分比、环比的百分 比。4.当天的民航客运量、比2024年同期多或者少的百分比、环比的百分比。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 • 多源数据融合分析:在智能交通和城市 规划中,o3mini有助于将不同来源的数据 (如交通流量、气象数据等)进行融合分析, 预测交通拥堵,为城市规划提供决策支持。 • 交互式数据可视化:在商业智能和数据0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 多轮对话 数学运算 逻辑分析 能力图谱 诗歌创作 语音识别 指令理解 方案规划 实体识别 l 文本创作 文章/故事/诗歌写作 营销文案 、广告语生成 实验二改变初始信念分布,探讨初始条件对结果的 影响。实验三引入10%代理发布的偏误信息,观察 其对信念动态的影响。50个代理人在30天内共生成 194699条对话。 50个智能体的在线社区模拟仿真 场景3:多智能体在线社区模拟 p 为了观测偏误信息加入后50个代理意 见动态的具体呈现,研究通过依存关系 构造三个科学共识的语义图谱,并和无 偏误状态进行对比。对每个科学共识议 题,选择图中最有代表性的40个实体0 码力 | 65 页 | 4.47 MB | 8 月前3
Deepseek R1 本地部署完全手册Ai Club 作者wechat:samirtan 版本:V2.0 更新⽇期:2025年2⽉8⽇ ⼀、简介 Deepseek R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP8 太初T100加速卡 个⼈开发者原型验证 14B 昆仑芯K200集群 企业级复杂任务推理 32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI0 码力 | 7 页 | 932.77 KB | 8 月前3
DeepSeek从入门到精通(20250204)数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 角色扮演型提示语:要求AI扮演特定角色,模拟 特定场景。 4. 创意型提示语:引导AI进行创意写作或内容生成。 5. 分析型提示语:要求AI对给定信息进行分析和推 理。 6. 多模态提示语:结合文本、图像等多种形式的 输入。 表1-1-1提示语的本质特征 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语:Hello, world” 上下文提供0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 角色扮演型提示语:要求AI扮演特定角色,模拟 特定场景。 4. 创意型提示语:引导AI进行创意写作或内容生成。 5. 分析型提示语:要求AI对给定信息进行分析和推 理。 6. 多模态提示语:结合文本、图像等多种形式的 输入。 表1-1-1提示语的本质特征 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语:Hello, world” 上下文提供0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学第二弹:DeepSeek赋能职场DeepSeek如何赋能职场应用? ——从提示语技巧到多场景应用 中央民族大学 新闻与传播学院 清华大学 @新媒沈阳 团队 向安玲 Innovator For Culture & Art 文、图、乐、剧 Innovator For Social 智能角色交互体 Innovator For Science & Industry 行业大模型 基座大模型 人机协同 Chatbot 2021中国计算机学会大数据与计算智能大赛-“千言〞 问题匹配鲁棒性评测 第一名 2021年全国知识图谱与语义计算大会-医疗科普知识答非所问识别 第一名 互联网虛假新闻检测2019全球挑战赛-虛假新闻多模态检测 第一名 中国法研杯CAIL2020司法人工智能赛 第一名 DeepSeek的三种模式 平台 地址 版本 备注 英伟达NIM微服务 https://build.nvidia.com/d0 码力 | 35 页 | 9.78 MB | 8 月前3
普通人学AI指南AI 提示语的工具。 2.5.5 可视化 AI 提示语 Figure 9: 可视化提示词 网址:https://tools.saxifrage.xyz/prompt,一个可视化工具,帮助用户为多 种 AI 模型生成和优化提示语。 2.5.6 Snack Prompt 提供最新 AI 模型提示词的工具,旨在快速获取和使用最新的 AI 提示进行内容 创作。 2.6 AI 大模型 2.6.1 LobeChat 搭建美观的大模型前端界面 19 4.1 LobeChat 开源框架,经过我的调研,发现 LobeChat 是目前最优化、最美观和炫酷的前 端界面,适配各个大模型,支持文字、语音、图片的多模态交互。 4.2 步骤一安装 docker 4.2.1 了解 docker 基本用法 Docker 是一个开源的容器化平台,旨在开发、部署和运行应用。它利用容器来 隔离软件,使其在不同环境中都能一致运行。Docker0 码力 | 42 页 | 8.39 MB | 8 月前3
Python 标准库参考指南 3.9.20 实参指定排序函数用的参数,如传给list.sort() 的。 default 实参是当可迭代对象为空时返回的值。如果可迭代对象为空,并且没有给 default ,则会触 发ValueError。 如 果 有 多 个 最 大 元 素, 则 此 函 数 将 返 回 第 一 个 找 到 的。 这 和 其 他 稳 定 排 序 工 具 如 sorted(iterable, key=keyfunc, reverse=True)[0] 实参指定排序函数用的参数,如传给list.sort() 的。 default 实参是当可迭代对象为空时返回的值。如果可迭代对象为空,并且没有给 default ,则会触 发ValueError。 如 果 有 多 个 最 小 元 素, 则 此 函 数 将 返 回 第 一 个 找 到 的。 这 和 其 他 稳 定 排 序 工 具 如 sorted(iterable, key=keyfunc)[0] 和 heapq 'U',该字符已不再具有任何效果,并被视为已弃用。之前它会在文 本模式中启用universal newlines,这在 Python 3.0 中成为默认行为。请参阅newline 形参的文档了解更 多细节。 注解: Python 不依赖于底层操作系统的文本文件概念; 所有处理都由 Python 本身完成,因此与平台 无关。 buffering 是一个可选的整数,用于设置缓冲策略。传入 0 来关闭缓冲(只允许在二进制模式下),传入0 码力 | 2015 页 | 10.12 MB | 9 月前3
共 144 条
- 1
- 2
- 3
- 4
- 5
- 6
- 15













