24-云原生中间件之道-高磊高级能力-云原生数据库-应用的基石-1-价值和差别 先从一个广告词来看看云原生数据库和一般数据库的差别 项目 传统数据库 Oracle 云原生 数据一体机 存储架构 存算一体: 调整困难、只能满 足一定的吞吐量要 求 存算分离: 自动调整、拓展能 力强,满足更大吞 吐量 存储自动扩缩容 手工填加机器, 手工同步 完全自动化 高性能 存在性能瓶颈 类似日志方式的顺 序写,性能高 易用程度 封闭体系,集成各 类优秀能力较差 据、交通数据、传感器数据实时 写入HBase中,分析结果输出到用户的监控前端系统展示,实现物联网数据的实时 监控分析。 优势 易接入: 轻松对接消息系统、流计算系统 高并发: 满足千万级并发访问 存算分离: 按需分别订购计算与存储,成本低、故障恢复快 利用HTAP模式,可以将查询和分析合并 起来,更加节约成本,并提高了性能 高级能力-云原生数据库-应用的基石-4-端到端安全 DB计算层 分布式共享 杂的部署环境,小到IoT设备,大到自建IDC,都能以跟公有云同样易用的方式接入消息服务,且能轻易地满足云边端一体化、跨IDC、跨云等互 通需求,真正成为应用层的通信基础设施。 多样性 云原生消息服务将致力于建设大而全的消息生态,来涵盖丰富的业务场景,提供各式各样的解决方案,从而满足不同用户的多样性需求。云原生 消息队列要求建设多个子产品线来支撑丰富的业务需求,比如消息队列RocketMQ,Kafka,微消息队列等。 标准化 容器镜0 码力 | 22 页 | 4.39 MB | 6 月前3
人工智能安全治理框架 1.02.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架 的措施。 务 与用户交互过程中,存在未经同意收集、不当使用数据和个人信息的安全风险。 (b)训练数据含不当内容、被 “投毒” 风险。训练数据中含有虚假、偏见、 侵犯知识产权等违法有害信息,或者来源缺乏多样性,导致输出违法的、不良 的、偏激的等有害信息内容。训练数据还面临攻击者篡改、注入错误、误导数 据的“投毒”风险,“污染”模型的概率分布,进而造成准确性、可信度下降。 (c)训练数据标注不规范风险。训练数据标注过程中,存在因标注规则 执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断0 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek从入门到精通(20250204)数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google), 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 策略四:控制提示语长度,确保生成的准确性 策略五:灵活运用开放式提示与封闭式提示 分解任务的技巧:分段生成、逐层深入、设置逻 辑结构 引导性问题的设计要点:设置多个层次的问题、 促使AI对比或论证、引导思维的多样性 控制提示语长度的技巧:避免嵌套复杂的指令、 保持简洁性、使用分步提示 开放式提示:提出开放性问题,允许AI根据多个 角度进行生成 封闭式提示:提出具体问题或设定明确限制,要 求AI给出精准回答0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google), 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 策略四:控制提示语长度,确保生成的准确性 策略五:灵活运用开放式提示与封闭式提示 分解任务的技巧:分段生成、逐层深入、设置逻 辑结构 引导性问题的设计要点:设置多个层次的问题、 促使AI对比或论证、引导思维的多样性 控制提示语长度的技巧:避免嵌套复杂的指令、 保持简洁性、使用分步提示 开放式提示:提出开放性问题,允许AI根据多个 角度进行生成 封闭式提示:提出具体问题或设定明确限制,要 求AI给出精准回答0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单数据采集 数据预处理 数据分析 可视化呈现 新思路:DeepSeek R1的数据应用 中 文 数 据 处 理 优 势 创 意 写 作 生 成 能 力 数 据 读 取 分 析 能 力 低 成 本 高 性 能 优 势 编 程 代 码 生 成 能 力 • 智 能 中 文 古 籍 修 复 与 注 释 : 利用 DeepSeek R1强大的中文理解能力,自动识 别并修复古籍中的破损文字,同时生成准确的 智能广告创意生成:根据产品特点和目标 受众自动生成创意广告文案和宣传语,提高广 告创作效率。 • 中小企业AI定制化服务:为中小企业提 供定制化的AI解决方案,如智能客服、营销 和办公工具,提升企业竞争力。 • 开源AI教育平台:借助DeepSeek R1 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 • 智能编程教育助手:为编程学生提供实 时编程指导,自动生成代码示例,帮助解决 自动化代码审查工具:自动审查代码, 发现潜在问题并提供优化建议,提升开发效 率与代码质量。 新思路:Open AI o3mini的数据应用 推 理 响 应 速 度 快 写 作 情 感 表 达 能 力 格 式 化 输 出 能 力 数 据 分 析 效 率 高 数 据 可 视 化 优 势 • 实时数据流处理与决策:利用o3mini在物 联网和工业自动化领域,快速处理来自传感器 和设备的实时数据,进行即时分析和决策,减0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利xNpNsPuOqQpN p 提示词驱动的新生产力 在AI时代,知识的获取成本趋近于零,拥有知识不再是核心竞争力。利用提示词创造知识,引领创新、明确 方向,成为社会与个人竞争力的关键。 p 选择中的再创造 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 性再生。 p 智慧赋能的决策力 提出问题与甄别答案的能力,使人类在信息爆炸与AI 然语言处理领域,可有效评估文本内容的相似程度。 重复率计算 使用n-gram方法(n=2),将生成文本分为连续的2-gram片 段,统计重复片段的比例。这个方法能够识别文本冗余信息并 评估内容多样性,特别适用于长文本生成。 最终智能体知识循环边界公式如下。其中,权重w1=0.6,w2=0.4,参考Kleinberg (1999) 的社交 网络分析研究,强调相关性优先于冗余性。这一配比平衡了生成内容的创新性与冗余性,为AI生成 在非收敛性提示词下,AI展现出更多的多样性和创新性,超越现有知识框架,尝试生成新的组合。问题类型对生成文 本的重复率有显著影响,但对相似度的影响不明显。重复率的变化更多受到提示词的影响,而相似度的变化则主要源 于问题类型以外的其他因素。 p 通过调整提示词收敛性和对话轮次,AI从依赖已有知识的固定模式向创新性生成内容逐步转变,显示提示词设计和交 互频率的影响力。 结合自适应反馈和递进式提示链0 码力 | 65 页 | 4.47 MB | 8 月前3
清华大学第二弹:DeepSeek赋能职场Chatbot •自然语言对话 Reasoner •基本的推理和问 题解决能力 Agent •代表用户执行任 务,具备自主行 动能力 Innovator • 参与发明和创造, 增强人类的创造力 和创新能力 Organization •承担整个组织的 功能,独立管理 并执行复杂的操 作 • 致力于人机协同和人机共生领域的世界级团队,专注于打造能够驾驭AI、熟悉AI并实现人类与AI共生发展的学术与实践模式。 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) Result (结果导向) 目标确定性高 (结果可预期) 目标开放性高 (结果多样性) Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) Responsiveness (响应模式) 被动适配 (按规则执行) 主动创新 (自主决策) Risk (风险特征)0 码力 | 35 页 | 9.78 MB | 8 月前3
2024 中国开源开发者报告目 录 Part 2: TOP101-2024 大 模 型 观 点 编委会 21 | 2024 年中国开源模型:崛起与变革 26 | 开源模型未必更先进,但会更长久 30 | 大模型撞上“算力墙”,超级应用的探寻之路 36 | AI 的三岔路口:专业模型和个人模型 40 | 2024 年 AI 编程技术与工具发展综述 45 | RAG 的 2024:随需而变,从狂热到理性 51 | 2024 年,技术大厂及其大型项 目依然备受关注,它们推动着技 术的快速发展和广泛应用。 同时,「民间」开源组织虽然在 关注度上不及大厂主导的项目, 但它们在某些技术细分领域中却 拥有非常强的影响力和活跃的开 发者社区。 两者的不同发展模式相互补充, 共同推动了国内开源生态的繁荣 与多样化。 最受关注开源组织指2024年获得 Star 数最多的开源组织(成员5人及以上) 8 / 111 本年度最受开发者喜爱的开源组织 Ruby 2024年,Gitee上的编 程语言依然由Java、 JavaScript、Python引 领潮流。 与此同时变化也在悄然进 行中:凭借AI开发热潮, C与C++依然在今年焕发 着生命力,流行度已与十 年前不相上下。 TypeScript依然强势增 长,随着越来越多的开发 者从JavaScript转向 TypeScript,其未来的 发展更值得期待。 11 / 111 本年度增长最快编程语言0 码力 | 111 页 | 11.44 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502360集团创始人 周鸿祎 3 政企、创业者必读政企、创业者必读 一张图读懂一堂DeepSeek课政企、创业者必读 AI给了一个比互联网更大的机会 互联网是连接平台,人工智能是生产力 互联网是赋能性技术,生产力属性较弱 人工智能既能单兵作战,也能外部赋能 互联网创造了能写140个字的推特和分享照片的Instagram AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 和个人淘汰。你相不相信? 建立AI信仰 6政企、创业者必读 大模型不是泡沫,而是新一轮工业革命的驱动引擎 蒸汽革命 电气革命 信息革命 以大模型为代表的 人工智能革命 人工智能是新质生产力的关键支撑技术,人工智能+百业千行将带动新一轮工业革命,为高质量发展注入强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 传统软件是辅助人的工具,Agent是能够自主工作的数字员工,是新的生产力政企、创业者必读 22 DeepSeek出现之前的十大预判 之九 开源效果追赶上闭源 技术开放,吸引广大开发人员和用户使用 很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小 美国预训练堆算力的路线不可持续,有待发现新范式“换道超车”0 码力 | 76 页 | 5.02 MB | 5 月前3
27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 自动化特征 智能家居 智能办公室 智能信号灯... 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 高算力的场景,需要 实现云边一体纳管, 简化运维,降低成本, 客户专注于业务领域。 • 无论是AIoT还是边缘 计算,核心要素是计 算,计算平台的训练 平台位于云端,而推 理计算位于BOX端,并 且能够适应各类算法 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景 赋能。 • 一切围绕如何将算力 输送到业务场景为中 心思想,构建技术体 系。0 码力 | 20 页 | 5.17 MB | 6 月前3
共 110 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11













